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Abstract— Finding Nash Equilibrium (NE) for nonlinear 

games is a challenging work due to existence of local Nash 
equilibrium traps. So, devising algorithms that are capable of 
escaping from local optima and finding global solutions is needed 
for analysis of nonlinear games. Evolutionary algorithms (EAs) 
as the popular stochastic global search algorithms can be 
exploited for this purpose. This paper studies performance of 
discrete invasive weed optimization (DIWO) for Nash 
equilibrium search in games with numerous local NEs. Firstly, 
DIWO is introduced and specialized for optimization in 
descretized spaces. Efficiency of DIWO for function optimization 
is evaluated and compared with some other discrete EAs through 
a number of popular test functions in stochastic optimization 
literature. Afterwards, it is explained how to characterize NEs as 
minima of an objective function, and DIWO is used to minimize 
these functions in two experimental studies. The first problem is 
a static nonlinear game with multiple local NEs, and the second 
one is Cournot model of a transmission-constrained electricity 
market called IEEE30 bus test system. The results show that the 
proposed algorithm is a promising technique to come up with 
complex theoretical and practical games. 
 

Index Terms—Evolutionary Algorithms, Discrete Invasive 
Weed Optimization, Nash Equilibrium, Electricity Markets. 
 

I. INTRODUCTION 
ANY techniques have been developed for searching Nash 
Equilibrium (NE) in game theory problems. All the 

approaches are inspired by NE definition which is maximizing 
the payoff, given other players’ strategies. The simplest 
method which can be applied to two or three player games is 
finding the intersection of best response curves (reaction 
curves) by drawing or Algebra. For graphical approach, some 
geometric techniques have been also proposed to come up 
with more than two player problems [1]. Algebra can improve 
the method to solve games with several players, but it can be 
applied to problems with simple mathematical manipulations. 
This algorithm is commonly used in Cournot or Bertrand 
models of electricity markets with linear demand functions, 
using the first-order condition for maximizing each player’s 
payoff [2], [3], [4]. 

Iterative NE search in which players repeatedly maximize 
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their payoff by turn is another method that is applied to more 
complex problems. The profit maximization problem which is 
embedded in this method can be solved by local or global 
optimization algorithms. In literature, local search is more 
popular and have been employed in [5], [6] and [7], however 
in [8], a GA-based algorithm is also presented for profit 
maximization. 

In recent years, with development of Soft Computing, and 
increasing growth of bioinspired computing in a variety of 
applications, a considerable amount of attention has been 
dedicated to evolutionary programming and computational 
intelligence for game learning and simulation of games in 
electricity markets [5], [8]-[16]. Coevolutionary programming 
is the most popular technique for this purpose. In [5], a novel 
Hybrid Coevolutionary is applied to solve constrained-
transmission electricity markets, and in [11], a GA-based 
coevolutionary algorithm is exploited to simulate a simple 
electricity pool. Besides coevolutionary algorithms, learning 
methods in agent-based approach have been employed to 
study imperfect competition in electricity markets [17]-[19]. 
In fact, these days, agent-based economics is a rigorous 
opponent of game theory to simulate electricity markets. 

Another approach for searching NE is characterization of 
NEs in terms of minima of a function and then minimizing this 
objective function. This method was firstly employed in 
finding mixed strategy NEs [12], [13], but recently a similar 
technique has been introduced in [10] to identify pure NE in 
games with a large number of players. The virtue of this 
approach is that it provides a measure to evaluate fitness of an 
obtained NE and also prepares a basin to find all NEs for a 
game with more than one NE using the conventional 
techniques posed in optimization literature. It seems that more 
investigations are needed to understand the efficiency of this 
approach (which is partially addressed in this paper). 

In this study, Invasive Weed Optimization (IWO) algorithm 
as an efficient evolutionary algorithm for fast and global 
search is employed to find NE in complex nonlinear games. In 
fact, discrete invasive weed optimization (DIWO) which was 
proposed in the previous work for combinatorial optimization 
[20] is modified and specialized for search in descretized 
spaces and used to minimize objective functions which encode 
NEs as their minima. Invasive Weed Optimization is a novel 
ecologically inspired algorithm that mimics the process of 
weeds colonization and distribution. Despite its recent 
development, it has shown successful results in a number of 
practical applications like optimization and tuning of a robust 
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controller [21], optimal positioning of piezoelectric actuators 
[22], developing a recommender system [23], distributed 
identification and adaptive control of a surge tank [24], 
analysis of electricity markets dynamics [25], cooperative task 
assignment of UAVs [20], Nash equilibrium search in 
electricity markets [26], etc. 

Section II provides steps for algorithm design comprising 
quick review of continuous IWO, introduction to discrete 
IWO, and discussion on parameters setting for DIWO. In 
section III, simulation results for optimization of some famous 
benchmarks are presented and compared with two other 
discrete EAs. Section IV is dedicated to Nash equilibrium 
search with minimization of an objective function. This 
section starts by a summary of some basics like description of 
games and Nash equilibrium, and next, it is explained how to 
define the objective function. In addition, two experiments are 
conducted in this section including a nonlinear game with 
multiple local minima and a transmission-constrained 
electricity market model known as IEEE30 bus test system to 
evaluate performance of the proposed algorithm. Finally, 
conclusions are drawn and future works are summarized in 
section V. 

II. ALGORITHM DESIGN 

A. Continuous Invasive Weed Optimization 
IWO was developed by Mehrabian and Lucas in 2006 [21]. 

IWO algorithm is a numerical stochastic search algorithm 
mimicking natural behavior of weeds in colonizing and finding 
suitable place for growth and reproduction. Some of distinctive 
properties of IWO in comparison with other EAs are the way 
of reproduction, spatial dispersal and competitive exclusion 
[21].  

In IWO, the process begins with initializing a population. It 
means that a population of initial solutions is randomly 
generated over the problem space. Then each member of 
population produces seeds depending on its relative fitness in 
the population. Number of seeds for each member varies 
between     , for the worst member of population, and     , 
for the best member of population. Seeds are randomly 
scattered in solution space by normally distributed random 
numbers with mean equal to zero. Standard deviation (SD) of 
normal distribution for each generation is determined by (1). 

      = (            ) (       )       −        +                (1) 

         is the maximum number of iterations,       is the 
SD at the current iteration and  n is the nonlinearity modeling 
index. The produced seeds and their parents considered as the 
potential solutions for the next generation. Finally, after a 
number of iterations the population reaches its maximum and 
an elimination mechanism should be employed. For this 
purpose, the seeds and their parents ranked together and those 
with better fitness survive and become reproductive [21]. The 
pseudocode for IWO is presented in Fig. 1, and the set of 
parameters for IWO algorithm is provided in Table I. 
 

  

TABLE I.  IWO PARAMETERS 

Symbol Definition N    Number of initial population iter     Maximum number of iterations P     Maximum number of plants S     Maximum number of seeds S     Minimum number of seeds    Nonlinear modulation index 
σ      Initial vale of standard deviation 
σ       Final vale of standard deviation 
 

B. Discrete Invasive Weed Optimization 
Due to continuous IWO’s distinctive properties, its local 

and global abilities for exploration and exploitation, and also 
its successful results in a considerable number of applications 
after a short time of its development, Discrete Invasive Weed 
Optimization (DIWO) was proposed in [20] hopping to exploit 
these features in discrete optimization problems. The 
algorithm introduced in [20] was applied to combinatorial 
optimization problems and was somehow heuristic in some 
aspects. However, here, we provide a scheme which has a 
clear and straightforward procedure for optimization in 
descretized spaces. 

The framework for DIWO is the same as IWO’s, but some 
considerations are taken for exploration in discrete search 
spaces. The psuedocode for DIWO is given in Fig. 2. 

 
 

 
The process for computing number of seeds and also 

1. Genearte random population of    plants from the set of pheasible 
solutions; 

2. For     =: 1 to the maximum number of generations 
a. Compute maximum and minimum fitness in the colony; 
b. For each plant  ∈   

i. Compter number of seeds of  , corresponding to its fitness 
ii. Randomly select the seeds from the pheasible solutions 

around the parent plant ( ) in a neighborhood of radius   
with normal distribution  

iii. Add the generated seeds to the solution set,   
c. If (| | =  ) >      

i. Sort the population N in descending order of their fitness 
ii. Truncate population of weeds with smaller fitness until  =      

3. Next     ; 
Figure 2.  Psuedocode for DIWO algorithm 

1. Genearte random population of    solutions; 
2. For     =: 1 to the maximum number of generations  

a. Compute maximum and minimum fitness in the colony; 
b. For each individula  ∈   

i. Compute number of seeds for   according to its fitness; 
ii. Randomly distribute generated seeds over the search space 

with normal distribution around the parent plant  ; 
iii. Add the generated seeds to the solution set,  ; 

c. If (| | =  ) >      
i. Sort the population   in descending order of their fitness; 

ii. Truncate population of weeds with smaller fitness until  =     ; 
3. Next     ; 

Figure 1.  Psuedocode for IWO algorithm 
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competition exclusion is completely the same as IWO, but 
seeds generation has been modified to random selection of 
solutions from the hypercube of radius   in the    -
dimentional space of feasible solutions around the plant with a 
normal distribution. For purpose of optimization in evenly 
descretized spaces with grids (which is the case, here), 
neighborhood is defined with cells in the grid world. It means 
that for a reproductive plant, all the neighboring cells within 
the hypercube of size (2 − 1)    around the plant are 
considered and each dimension of seed is generated by 
randomly selecting a cell from 2 − 1 potential cells with 
weights normally decaying from origin. This process is 
illustrated in Fig. 3. 

 

 
 
For parameters setting, following the guidelines presented 

in [21] and [24] and also our experimental studies, some 
suggestions can be offered. Firstly, the best and general value 
for   is 3. It is suggested to set       to 0 or 1 and       to 3.  ,      , and        are fixed according to the problem range of 
solutions. We suggest to set   for each dimension to 1 5⁄  of 
the total cells in that dimension after dividing the initial 
solution space into grids. 

III. SIMULATION RESULTS OF DIWO FOR FUNCTION 
OPTIMIZATION 

A. Convergence of DIWO 
Three studies are conducted to demonstrate evolutionary 

process of optimization in DIWO to locate global minima of 
discrete functions. The benchmarks are Sphere, Griewank, and 
Rastrigin functions which are described in Table II. 

TABLE II.  BENCHMARK FUNCTIONS 

Name Function Limits    Prec. 

Sphere  ( ) = ∑ (   )      [-40, 40] 2 0.01 

Griewank  ( ) = 1 + ∑        −∏ (cos (  /√ ))          [-5.12, 5.11] 10 0.01 

Rastrigin  ( ) = ∑ (   − 10 cos(2   ) + 10)     [-5.12, 5.11] 30 0.01 

 
The Sphere function is quadratic, continuous, convex, and 

unimodal. The minima for this function is 0 at the origin. This 
function provides an easily analyzable first test for the 
optimization algorithm. Process of colonization of weeds 

around the point with the best fitness is shown in Fig. 4. It can 
be observed that the plants grow towards the optimal point 
from the initialization area. In their progress towards the 
optimal point, plants with worse fitness are being excluded, 
and only weeds with better fitness are allowed to be 
reproduced, which leads in colonization about the optimal 
point. 

 

TABLE III.  DIWO PARAMETERS FOR SPHERE FUNCTION MINIMIZATION 

Symbol value Symbol value     10    3          100        500       10         1       3    500       0        [-40, -30] 
 

The second benchmark is Griewank function with 
dimension of 10. This is a multimodal function with a global 
minimum at origin which is commonly used to evaluate 
performance of EAs for global optimization. To show virtues 
of DIWO for stochastic optimization, we compare the 
proposed algorithm with discrete particle swarm optimization 
(DPSO) [27] and genetic algorithm (GA) with binary 
encoding. All the algorithms are conducted for thirty times 
with approximately the same number of function evaluations 
to have a fair comparison. Average results of the experiments 
are depicted in Fig. 5, showing superiority of DIWO for 
optimization of this function. 

Finally, the third benchmark is Rastrigin function which is 
non-convex, and multimodal. It is a fairly difficult problem for 
evolutionary algorithms due to the large number of local 
minima. Like previous functions, the global minimum is 
located at origin. Again, DIWO is compared with DPSO and 
GA (binary) in this study. Each algorithm run is repeated for 
thirty times with nearly the same number of function 

 

 
 

Fig. 4. Convergence of DIWO to the optimal value of the Sphere 
function  

2 − 1 

 
 
 
 
 

           
 
 

 
Figure 3.  A 1-D descretized space and random weitghted selection  

Potential positions 

Current position 
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evaluations for the purpose of fair comparison. Average 
results of this experiment are presented in Fig. 6. It can be 
observed that DIWO outperforms GA, but DPSO has a little 
better fitness than DIWO for optimization of this benchmark. 

 

 

 

TABLE IV.  DIWO PARAMETERS FOR GRIEWANK AND RASTRIGIN 
FUNCTION MINIMIZATION 

Symbol 
value 

Symbol 
value 

Griewank Rastrigin Griewank Rastrigin    22 40   3 3         200 200       250 200      22 40        1 1      3 3   250 200      1 1       [-5.12, 5.11] [-5.12, 5.11] 

B. Experimental Studies on De Jong’s test suite 
In this part, we employ the very standard De Jong’s Test 

Suite in [28] which provides functions with different 
archetypes to evaluate performance of DIWO. These functions 
are characterized in Table V. The first function is Sphere 
function introduced in the previous part. The Rosenbrock 
function (F2) is quadratic, continuous, non-convex, unimodal. 
For   dimensions, this function has its global minima at   × . 
This function is considered as a nightmare for most of the 
optimization algorithms because it has deep parabolic valley 
along the curve. Algorithms that are not able to discover good 
directions underperform in this problem. The third function is 
Step function which is discontinuous, non-convex, and 
unimodal. This function is used as a representative of 
problems with flat surfaces that are considered as obstacles for 
optimization algorithms, because they do not give any 
information about which is the feasible direction. The main 
idea of this function is to make the search more difficult by 
introducing small plateaus to the topology. The Quartic 
function (F4) is quadratic, continuous, convex, unimodal 
padded with Gaussian noise. The fact of introducing noise to 
the function causes that the algorithm never gets the same 
value on the same point. Algorithms that do not work well 
optimizing this function will work poorly on surfaces with 
noisy data. Note that in this study, fitness values for this 
function are presented with mean of objective values for the 
individuals in each generation (not the best). The last function 
is the Foxholes function which is continuous, non-convex, 
non-quadratic, two-dimensional with 25 local minima and 
value of approximately 1 for these points. The results are 
compared with those of DPSO and GA (binary) reported in 
[29]. It is tried to have the same number of function 
evaluations in different algorithms for the purpose of fair 
comparison. Results of experiments including best achieved 
values and standard deviations (in parenthesis) and the 
employed parameters are provided in Table VI and Table VII 
respectively. It can be observed that DIWO manages to obtain 
good final values and surpasses the performance of other 
algorithm in all the test functions except for Step function 
(F3). 

TABLE V.  DE JONG’S TEST SUITE 

Fn. Function Limits    Precision 
F1  ( ) = ∑ (   )      [-5.12, 5.11] 3 0.01 
F2  ( ) = ∑ [100(    −    ) + (  − 1) ]      [-5.12, 5.11] 2 0.01 
F3  ( ) = 6 + ∑ (⌊  ⌋)      [-5.12, 5.11] 5 0.01 
F4   ( ) =      (0, 1) + ∑ (  .   )      [-1.28, 1.27] 30 0.01 

F5 
  ( ) =     + ∑      (         )  (     / )        [-65.5, 65.5] 2 0.001 

 
    (a) 

 
    (b) 

 
Fig. 6. Optimization process of Rastrigin function 

a) Evolution of fitness function 
b) Comparison of DIWO with DPSO and GA 

 
    (a) 

 
    (b) 

 
Fig. 5. Optimization process of Griewank function 

a) Evolution of fitness function 
b) Comparison of DIWO with DPSO and GA 
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TABLE VI.  COMPARING DIWO WITH DPSO AND GA ON DE JONG’S 
TEST SUITE 

Fn. GA DPSO DIWO ENa for 
DIWO 

EN for 
others 

F1 0.00014 
(0.00009) 

0.00008 
(0.00007) 

0.00000 
(0.00000) 6714 8000 

F2 0.27285 
(0.41788) 

0.10702 
(0.17433) 

0.00000 
(0.00000) 7686 8000 

F3 0.00000 
(0.00000) 

0.00000 
(0.00000) 

0.02000 
(0.15683) 7998 8000 

F4 7.13937 
(2.19431) 

2.52286 
(1.08721) 

0.94604 
(0.46457) 5142 8000 

F5 1.17155 
(0.14406) 

1.03724 
(0.08504) 

1.00794 
(0.09940) 16024 16000 

a. mean of function evaluation number 

TABLE VII.  DIWO PARAMETERS FOR DE JONG’S TEST SUITE OPTIMIZING 

Symbol value Symbol value     20    3          200, 400e        100a,b, 300c, 50d, 40000e       20, 23e         1       3    100a,b, 200c, 50d, 40000e       1 - - 
a. For F1; b. For F2; c. For F3; d. For F4; e. For F5; 

IV. DIWO FOR NE SEARCH 

A. Games and Nash Equilibrium 
A general multi-player game consists of an index set N = {1, 2, 3, … , N} called player’s set and an index set K = {1, 2, 3, … , K} as the stages of the game, showing the 

allowable number of moves for each player. In each stage, 
players take strategies from a set of strategy spaces U = {U  }, 
and receive a payoff of π (u , u  ), where u ∈ U  is the pure 
strategy for player i, given pure strategy set of others u  ={u , … , u   u   , … , u } ∈ U  . Pure strategy Nash 
Equilibrium (NE) is a point where no player can obtain a 
higher profit by unilateral movement. The satisfying NE 
condition for the combined strategy {u ∗, u  ∗} is characterized 
in (2). 
 ∀i,∀u ∈ U ,         π (u ∗, u  ∗) ≥ π (u , u  ∗)                   (2) 
 

As we will use the term local NE in this paper, here a 
definition of that from [5] is also provided. 
 ∃ > 0    ℎ  ℎ   ∀ ,∀  ∈   , (  ∗),                                   (  ∗ ,   ∗) ≥   (  ,   ∗)                                (3) 
 

where   , (   ) = {          −     <  }  

B. Nash Equilibrium as a Minimum of a Function 
The idea of characterization of Nash equilibria in terms of 

minima of a function was developed in [10], although a 
similar approach was previously used in [12] and [13] for 
identifying mixed NEs in games. In this method, an objective 
function is defined in which the minima are the NEs, and then 
any optimization algorithm can be exploited to solve this 
minimization problem. However, this objective function is 
driven in an indirect process that makes hard for the local 

optimization algorithms to find the minima, so a stochastic 
optimization algorithm should be used.  

One of the advantages of constructing an objective function 
is that we have a measure to assess merit of obtained solutions 
by its fitness value in the objective function. The other 
advantage is that we can apply conventional techniques like 
deflection, stretching, repulsion, etc. in optimization for 
computation of all NEs [12], [13], [30]. 

The objective function for each combined strategy u in the 
strategy space U and payoff function   is defined as follows: 

  (u) = ∑ [max   ∈        (u , … , u   , u  , u   , … , u )−   (u)] 
 (4) 

 
Form the classical definition of Nash Equilibrium, it is easily 
concluded that the function   is strictly positive, if the 
combined strategy u is not equilibrium and equal to zero 
otherwise, so the NEs are the minima of this function. 

It can be observed in (4) that a maximization problem is 
embedded in this function, for which direct exhaustive search, 
local or global optimization can be employed. In games with 
discrete and not too large strategy spaces, maximization can 
be performed by sorting the payoffs, but for continuous 
games, local or global maximization might be useful. In this 
study, we are involved with games where the strategy spaces 
are discretized to small grids with arbitrary precision. So, the 
objective function is easily calculated for each strategy by 
exhaustive search and then the proposed EA is used to 
minimize this function. 

C. A Numerical Example 
This is a nonlinear static game with local NE traps [5], 

which is also analyzed in [5] and [8], and we can consider it as 
a good benchmark for nonlinear games. The profit function for 
this game is characterized in (5), and the global best responses 
and the local best responses for this game are illustrated in 
Fig. 7. 
 
         (  ,  ) = 21 +   sin(    ) +      sin(    )  

     (  ,  ) = 21 +   sin(    ) +      sin(    )        (5) 
 

 

 
 

Fig. 7. Local and global best responses for the numerical example. 



SOCIAL, COGNITIVE, AND BEHAVIOURAL SYSTEMS FINAL PROJECT 

 

6

 
We evaluate performance of our proposed discrete invasive 

weed optimization (DIWO) for NE search in this nonlinear 
game with strategies descretized at precision of 0.1. Fig. 8a 
shows the strategies evolution while Fig. 8b presents trace of 
fitness values for the objective function through the 
evolutionary process. It can be seen that the algorithm is 
capable of identifying the global NE with the specified 
precision. Comparing with experiments in [5], we can say that 
our algorithm is better than the simple coevolutionary genetic 
algorithm in finding the global NE. 

 

 

TABLE VIII.  DIWO PARAMETERS FOR NE SEARCH IN THE NUMERICAL 
EXAMPLE 

Symbol value Symbol value    20   3         100       150      20        1      3   150      1 - - 
 

D. Transmission-Constrained Electricity Markets 
Although transmission-constrained electricity markets with 

linear demand functions have linear demand curves, but the 
transmission constraints can cause individual profit functions to 
have local optima [7]. Actually, reaction curves in this model 
are discontinuous piecewise linear functions that might make 
local NE traps [5] or even disrupt existence of pure strategy 
equilibrium for the game [5], [31], [32]. Besides the fact that 
transmission-constrained electricity market model is a good 
mathematical example with a complex game structure and local 

optima, it is an important model for market power analysis in 
the restructured electricity industry [32], [33]. Hence, 
transmission-constrained electricity market is a good example 
of complex game for our purpose of Soft Computing. Shortly, 
trading in electricity markets can be represented by the 
maximization of total welfare subject to the constraints on the 
system (6). 

 max ( ∑          −∑       )  
  . .                 ℎ                        =                 ℎ            (6) 

 
When transmission constraints are binding in the 

imperfectly competitive market, Cournot behavior will produce 
locational price differences similar to a competitive market 
with constraints present. This increases the difficulty of 
computing the profit maximizing condition of the strategic 
players. The profit maximizing function of each strategic 
player has an embedded transmission-constrained welfare 
maximization problem within its major problem. The 
generation and transmission line constraints are included in the 
welfare maximization subproblem. The profit function 
maximization of each utility is given in (7). 
 max       −         max∑              ,                                  (7) 

 
Locational prices (  ), are determined by the Lagrange 

multipliers of the locational energy balance equality condition 
for Kirchoff’s laws in the welfare maximization problem which 
is also the market-clearing problem, here [34], [35]. 

E. IEEE30 Bus System with Transmission Constraints 
To illustrate the performance of DIWO in a practical and 

complicated problem, IEEE30 bus test system is studied in 
this part. IEEE30 bus network (cf. Fig. 9) is composed of six 
producers and 20 consumers. We consider three transmission 
constraints for this network which are listed in Table IX. Data 
for producers and load demand curves are provided in Table X 
and XI respectively. Note that load demand curves for this 
system are linear functions modeled according to (8). With 
these settings, the system has one pure NE at  = (26.6, 45.4, 
36.8, 24.2, 43.4, 27.9) with  ( ) = (447, 896, 731, 505, 1054, 
800). 

 
 

Fig. 9. IEEE30 bus test system [31] 
 

 
    (a) 

 
    (b) 

 
Fig. 8. NE search for a nonlinear static game with DIWO 

a) Strategies evolution 
b) Objective function minimization  
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  =   +   ×    (8) 
 
 

TABLE IX.  LINES WITH TRANSMISSION CONSTRAINTS   

Line From bus To bus Flow limit (MW) 
7 4 6 5 
25 10 20 5 
33 24 25 5 

 

TABLE X.  PRODUCERS’ COST DATA  

Cost Function Bus                   

  (  )=     +          
#1 25 0.15 5 80 
#2 20 0.25 5 60 
#13 23 0.2 5 60 
#22 22 0.25 5 60 
#23 20 0.2 5 80 
#27 22 0.15 5 70 

 

TABLE XI.  DATA FOR LOAD DEMAND FUNCTIONS  

Bus    
$/MW 

   
$/MW2 Bus    

$/MW 
   

$/MW2 
2 125 -5 17 100 -4.5 
3 80 -4 18 80 -4 
4 100 -4 19 100 -5 
7 150 -5 20 100 -5 
8 120 -4.5 21 75 -3.5 
10 100 -4 23 70 -3 
12 120 -5 24 80 -4.5 
14 80 -3.5 26 80 -4 
15 80 -3 29 75 -4 
16 80 -4 30 100 -5 

 
According to explanations in part D for transmission 

constrained electricity markets, we simulate the system with 
space of bidding quantities descretized at precision of 1. The 
evolution of quantities for each player and objective function 
minimization are demonstrated in Fig. 10. It can be observed 
that the proposed algorithm is capable of finding NE for this 
complex problem. DIWO parameters are also presented in 
Table XII. 

V. CONCLUSION 
In this paper we modified DIWO for optimization in 

descretized spaces and employed it for Nash equilibrium search 
in games with local NE traps. Performance of DIWO for 
function optimization was tested through a set of popular test 
functions in stochastic optimization. Moreover, DIWO was 
used to minimize objective functions which encode NEs as 
their minima. A static nonlinear game with multiple local NEs 
and Cournot model of IEEE30 bus test system with 
transmission constraints were two experiments studied in this 
paper. Results showed that DIWO has a good performance for 
the purpose of global optimization and NE search for games 
with discrete strategy spaces. 

For future work, we are to study the proposed algorithm for 
NE search in mixed strategy games with numerous equilibria. 
In addition, evaluating approach of characterizing NEs as 
minima of a function for games with continuous spaces is our 
current focus of research. 

 
 

TABLE XII.  DIWO PARAMETERS FOR NE SEARCH IN IEEE30 BUS TEST 
SYSTEM 

Symbol value Symbol value    20   3         100       15      20        1      3   20      1 - - 
 

 
    (a) 

 
    (b) 

 
    (c) 

 
Fig. 10. NE search for IEEE30 bus test system with DIWO 

a) Strategies evolution for player 1, 2, 3. 
b) Strategies evolution for player 4, 5, 6. 

c) Objective function minimization  



SOCIAL, COGNITIVE, AND BEHAVIOURAL SYSTEMS FINAL PROJECT 

 

8

REFERENCES 
[1] J. Sarkar, B. Gupta, D. Pal, “A Geometric solution of a Cournot 

oligopoly with non-identical firms,” Journal of Economics Education, 
vol. 29, 118-126, 1998. 

[2] D. W. Carlton, J. M. Perloff, Modern Industrial Organization, 3rd ed. 
New York: Addison-Wesley, 2000. 

[3] J. Y. Jin, “Comparing Cournot and Bertrand Equilibria Revisited,” 
Discussion Paper FS IV 97-4, Wissenschaftszentrum Berlin, 1997. 

[4] G. Francisco, "A Competitive Market in Every Cournot Model" 
(February 22, 2003). Available at SSRN: 
http://ssrn.com/abstract=383360. 

[5] You Seok Son, Ross Baldick, “Hybrid Coevolutionary Programming for 
Nash Equilibrium Search in Games with Local Optima.” IEEE Trans. 
On EC, vol. 8, no. 4, Aug. 2004. 

[6] B. F. Hobbs, C. B. Metzler, and J. S. Pang, “Strategic gaming analysis 
for electric power systems: An MPEC approach,” IEEE Trans. Power 
Syst., vol. 15, pp. 638–645, May 2000. 

[7] J. D. Weber and T. J. Overbye, “A two-level optimization problem for 
analysis of market bidding strategies,” in Proc. Power Eng. Soc. 
Summer Meeting 1999, vol. 2, 1999, pp. 846–851. 

[8] K. Razi, S. H. Shahri, A. R. Kian, “Finding Nash Equilibrium Point of 
Nonlinear Non-cooperative Games Using Coevolutionary Strategies,” 
Intelligent Systems Design and Applications, pp. 875-882, Oct. 2007. 

[9] H. Chen, K. P. Wong, D. H. M. Nguyen, and C. Y. Chung, “Analyzing 
Oligopolistic Electricity Market Using Coevolutionary Computation,” 
IEEE Trans. on  Power Systems, vol. 21, no. 1, pp. 143–152, Feb. 2006. 

[10] E.V. Beck, R. Cherkaoui, A. Minoia, D. Ernst. “Nash equilibrium as the 
minimum of a function. application to electricity markets with large 
number of actors,” In 2007 IEEE Lausanne Powertech, 2007. 

[11] T. C. Price, “Using co-evolutionary programming to simulate strategic 
behavior in markets,” J. Evol. Econom., vol. 7, pp. 219–254, 1997. 

[12] N.G. Pavlidis, K.E. Parsopoulos, M.N. Vrahatis, “Computing Nash 
equilibria through computational intelligence methods,” Journal of 
Computational and Applied Mathematics, vol. 175, 113–136, 2005. 

[13] R. Lung, D. Dumitrescu, “An evolutionary model for solving 
multiplayer noncooperative games,” Proceedings of the International 
Conference on Knowledge Engineering, Principles and Techniques, 
Cluj-Napoca (Romania), pp. 209-216, June 2007. 

[14] T. Riechmann, “Genetic algorithm learning and evolutionary games,” J. 
Econ. Dynamics Contr., vol. 25, pp. 1019–1037, 2001. 

[15] T. D. H. Cau and E. J. Anderson, “A co-evolutionary approach to 
modeling the behavior of participants in competitive electricity 
markets,” in Proc. IEEE Power Engineering Soc. Summer Meeting 
2002, vol. 3, pp. 1534–1540, July 2002. 

[16] H. Dawid, “On the convergence of genetic learning in a double auction 
market,” J. Econ. Dynamics Contr., vol. 23, pp. 1545–1567, 1999. 

[17] M. Saguan, N. Keseric, P. Dessante, J.M. Glachant,  “Market Power in 
Power Markets: Game Theory vs. Agent-Based Approach,” 2006 IEEE 
PES Transmission and distribution conference, Caracas, Venezuela, 
August 2006, pp. 1-6, Aug. 2006. 

[18] D. Koesrindartoto, J. Sun, L. Tesfatsion, “An Agent-Based 
Computational Laboratory for Testing the Economic Reliability of 
Wholesale Power Market Designs,” IEEE Power Engineering Society 
Conference Proceedings, SF, CA, June 12-16, 2005. 

[19] D. W. Bunn, F. S. Oliveira, “Agent-based Simulation: An Application to 
the New Electricity Trading Arrangements of England and Wales,” 
IEEE–TEC, special issue: Agent Based Computational Economics, 
forthcoming, 2001. 

[20] M. Ramezani Ghalenoei, H. Hajimirsadeghi, C. Lucas, “Discrete 
invasive weed optimization algorithm and its application to cooperative 
multiple task assignment of UAVs,” in Proc. 48th IEEE Conference on 
Decision and Control, Dec. 2009, in press. 

[21] A.R. Mehrabian, C. Lucas, “A novel numerical optimization algorithm 
inspired from weed colonization,” Ecological Informatics, vol. 1, 355–
366, 2006. 

[22] A. R. Mehrabian and A. Yousefi-Koma, “Optimal positioning of 
piezoelectric actuators of smart fin using bio-inspired algorithms,” 
Aerospace Science and Technology, vol. 11, pp. 174–182, 2007. 

[23] H. Sepehri-Rad and C. Lucas, “A recommender system based on 
invasive weed optimization algorithm,” in Proc. IEEE Congress on 
Evolutionary Computation, 2007, pp. 4297–4304. 

[24] H. Hajimirsadeghi and C. Lucas, “A hybrid IWO/PSO algorithm for fast 
and global optimization,” in Proc. International IEEE Conference 

Devoted to 150 Anniversary of Alexander Popov (EUROCON 2009), St. 
Petersburg, RUSSIA, May 2009. 

[25] M. Sahraei-Ardakani, M. Roshanaei, A. Rahimi-Kian, C. Lucas, “A 
Study of Electricity Market Dynamics Using Invasive Weed 
Optimization,” in Proc. IEEE Symposium on Computational Intelligence 
and Games, Perth, Australia, Dec. 2008. 

[26] H. Hajimirsadeghi, A. Ghazanfari, A. Rahimi-Kian, C. Lucas, 
“Cooperative coevolutionary invasive weed optimization and its 
application to Nash equilibrium search in electricity markets,” in Proc. 
World Congress on Nature and Bioinspired Computing, Dec. 2009, in 
press. 

[27] Kennedy, J. & Eberhart, R. “A Discrete Binary Version of the Particle 
Swarm Algorithm” IEEE Conference on Systems, Man, and 
Cybernetics, Orlando, FA, 1997, pp. 4104-4109. 

[28] K. A. De Jong, “An analysis of the behavior of a class of genetic 
adaptive systems” Ph.D. dissertation, U. Michigan, Ann Arbor, 1975. 

[29] J. Pugh and A. Martinoli, "Discrete multi-valued particle swarm 
optimization," 

[30] K.E. Parsopoulos, M.N. Vrahatis, “On the Computation of All Global 
Minimizers Through Particle Swarm Optimization,” IEEE Transactions 
On Evolutionary Computation, vol. 8, no. 3, June 2004. 

[31] L. B. Cunningham, R. Baldick, M. L. Baughman, “An empirical study of 
applied game theory: Transmission constrained Cournot behavior,” 
IEEE Transactions on Power Systems, vol. 17, no.1, pp. 166–172, 
February 2002. 

[32] S. Borenstein, J. Bushnell, and S. Stoft, “The competitive effects of 
transmission capacity in a deregulated electricity industry,” RAND J. 
Economics, vol. 31, no. 3, pp. 294–325, Summer 2000. 

[33] J. B. Cardell, C. C. Hitt, andW.W. Hogan, “Market power and strategic 
interaction in electricity networks,” Resource Energy Economics, vol. 
19, pp. 109–137, 1997. 

[34] E. Bompard, Y.C. Ma, and E. Ragazzi, “Micro-economic analysis of the 
physical constrained markets: game theory application to the 
competitive electricity markets,” European Physical Journal B, vol. 25, 
pp. 153-160, 2006. 

[35] R. E. Bohn, M. C. Caramanis, and F. C. Schweppe, “Optimal pricing in 
electrical networks over space and time,” RAND J. Economics, vol. 15, 
no. 3, pp. 360–376, Autumn 1984. 

 

http://ssrn.com/abstract=383360

