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Abstract—This paper presents a fuzzy extension of TOPSIS 
(technique for order performance by similarity to ideal solution) 
with a new quantifier guided distance metric and majority 
opinion aggregator for multi-criteria decision making in a group 
decision environment. The proposed distance metric is based on 
OWA aggregators and provides an opportunity to use linguistic 
quantifiers to have linguistic definitions for proximity. On the 
other hand, the majority opinion aggregator is used to make a 
consensual judgment for synthesizing the individual opinions. A 
human resource selection problem is considered as the case 
study, and the proposed algorithm is employed to solve that. 
Simulation results show that our algorithm is more advantageous 
in reflecting opinions of the majority of decision makers and 
providing more confidence for their decisions. 

Keywords—Multi-Criteria Decision Making, Group Decision 
Making, TOPSIS, OWA, Majority Opinion. 
 

I. INTRODUCTION 
In all real decision making problems multiple criteria are 

considered to evaluate the choices. On the other hand, many 
decision making problems within organization are performed 
in a collaborative effort [1]. This study proposes a fuzzy 
approach for multi-criteria group decision making (MCGDM) 
under uncertainty using technique for order performance by 
similarity to ideal solution (TOPSIS) [2], linguistic quantifiers 
[3], and the concept of majority opinion [4]. 

TOPSIS is a popular and useful technique in dealing 
MCDM problems in the real words. Some of the advantages of 
TOPSIS according to [5] are intuitive and clear logic that 
represent the rationale of human choice, a scalar value that 
accounts for both the best and worst alternatives, ease of 
computation, and possibility for visualization. Linguistic 
quantifiers in fuzzy logic are used to generalize the concept of 
quantification of classical logic and helps to accomplish 
quantifier guided aggregations in decision making problems. 
In GDM, the goal is to determine a consensual judgment for 
each alternative that reflects the individual opinions [4]. In this 
respect, a majority opinion is a consensual judgment of a 
majority of the decision makers who have similar opinions. 
The concept of majority opinion is a novel idea proposed by 

Pasi and Yager in 2006 that can result to a great improvement 
for GDM techniques. 

In literature, there are interesting results on group decision-
making (GDM) or social choice theory and multi-criteria 
decision-making (MCDM) with the help of fuzzy sets theory 
that the interested reader is referred to [6]-[14]. 

The rest of this paper is organized as follows. Section II 
provides a definition for MCGDM, summarizes TOPSIS 
procedure for MCGDM problems, review OWA and IOWA 
operators with linguistic quantifiers, and elaborates the 
concept of majority opinion. In section III, our proposed 
algorithm is explained presenting a new distance measure 
based on OWA operators and modifying the concept of 
majority opinion to be integrated in TOPSIS for internal group 
aggregation. Next, the simulation results are summarized for a 
case study of human resource selection in section IV, and 
finally, the conclusions are drawn in section V. 

II. MULTI-CRITERIA GROUP DECISION MAKING  
In this paper, the context of multi-criteria group decision 

making is addressed. It is supposed that there is a group of 
decision makers (DMs) or experts,   = {   , … ,   } 
which provide the performance value for the alternatives  = {  , … ,  } with respect to a set of criteria  ={  , … ,  }, and the aim of decision making is to find the best 
alternative (or ranking of the alternatives) based on the overall 
performance in the specified criteria and different points of 
view. In both multi-criteria decision making (MCDM) and 
group decision making (GDM), there are two steps: 
aggregation and exploitation [6], [7], [9], [12], [15]. In 
MCDM, aggregation is to combine satisfaction over different 
criteria while GDM problem consists in combing the experts’ 
opinions into a group collective one.   

A. TOPSIS for Group Decision Making 
The original TOPSIS (Technique for Order Preference by 

Similarity to Ideal Solution) is proposed by Hwang and Yoon 
in 1981 [2] is a considered as a popular algorithm for MCDM 
under certain conditions. The idea is to find the best 
alternative with the shortest distance to the positive-ideal 
solution and the farthest distance from the negative-ideal 

mailto:h.hajimirsadeghi@ece.ut.ac.ir
mailto:lucas@ipm.ir


 

 

2

solution. The procedure which is presented in this section is 
the model proposed in [1] for group decision making. 

The process for original TOPSIS (not the group model) 
starts with forming the decision matrix representing the 
satisfaction value of each criterion (attribute) with each 
alternative.  Next, the matrix is normalized with a desired 
normalizing scheme, and the values are multiplied by the 
criteria weights. Subsequently, the positive-ideal and negative-
ideal solutions are calculated, and distance of each alternative 
to these solutions is calculated with a distance measure. 
Finally, the alternatives are ranked based on their relative 
closeness to the ideal solution. 

 Now, we explain the detailed procedure for TOPSIS for 
group decision making described in [1]. 

 
Step 1. Making decision matrix   ,  = 1, … , , for each DM. 

The structure for decision matrix is characterized in (1). 
 

                    =   ⋮  
  ⋯        ⋯     ⋮ ⋱ ⋮    ⋯                                    (1) 

 
    indicates the alternative  , and    denotes the criterion  , 

and      denotes the performance value for alternative    with 
respect to criterion   . 
 
Step 2. Making the normalized decision matrix   ,  =1, … , , for each DM. 
 

Any normalization method can be used in this step like 
linear normalization, vector normalization, non-monotonic 
normalization, etc. in this paper, vector normalization is used 
which is expressed in (2). 

                                       =      ∑ (    )                                        (2) 

 
In original TOPSIS, the weighted normalized matrix is 

calculated, but in [1], the weights are manipulated in next 
steps. One might see the reason in [16]. 

 
Step 3. Determine the positive-ideal and negative-ideal 
solutions     and      = 1, … , , for each DM. 
 

PIS and NIS are obtained as follows. 
           = {    , … ,     } =                              ∈   ,            ∈                           (3) 
           = {    , … ,     } =                              ∈   ,            ∈                           (4) 
 
Where   is associated with the set of benefit criteria and    

is associated with the set of cost criteria. 
 

Step 4. Calculate the separation measures from the PIS and 
NIS for the group. 

This step can be divided in the following two steps. 
 
Step 4a. Calculate the separation measures individually. 

 
In this step, the separation measure from PIS and NIS are 

computed with a distance metric. The manipulation for 
Minkowski’s    metric as the distance measure is described in 
(5) and (6). 

 
       =  ∑    (    −      )        ⁄

,   for  = 1, … ,      (5) 
 
       =  ∑    (    −      )        ⁄

,   for  = 1, … ,      (6) 
 
where   ≥ 1 and integer,     is the weight for the criterion   
and DM  , and ∑        = 1,  = 1, … , . 

Note that the metric with  = 2 is the Euclidean distance, 
and the metric with  = 1 is the Manhattan distance. 
 
Step 4b. Calculate the measures for the group 
 

In this step, the measures for different DMs should be 
combined (aggregated) through an operation ⨂, i.e.: 

 
               =     ⨂. . .⨂        for alternative                      (7) 
 
               =     ⨂. . .⨂        for alternative                      (8) 
 
Many operators can be employed for this purpose. In [1], 

geometric mean (9) and arithmetic mean (10) are used to 
calculate the group separation measures from PIS and NIS. 

 

       =        
      

 

(9)        =        
      

 

        =        
       

(10)        =        
       

 
Step 4b. Calculate the relative closeness   ∗    to the ideal 
solution for the group. 

The relative closeness is calculated according to (11) and 
the alternatives are ranked in descending order. 

   ∗   =                 = 1, . . . ,  (11) 
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Note that 0≤   ∗   ≤ 1, and larger value of   ∗    denotes the 
better performance of the alternative. 

B. OWA and IOWA Operators  
Ordered Weighted Averaging (OWA) as an aggregation 

operator was proposed by Yager in 1988 [17]. OWA is a 
mapping from [0, 1] → [0, 1] that has associated a weighting 
vector  = [  , … ,  ] such that   ∈ [0, 1], and ∑       =1, and is defined to aggregate a list of arguments   , … ,   ∈[0, 1] according to (12). 

 OWA(  , … ,   ) =     
      (12) 

 
where    is the  th largets element of the   . 

The degree of orness or optimism degree for an OWA 
aggregation operator denotes its closeness to OR operator and 
it is defined as follows. 

       (  , … ,  ) =  1 − 1   ( −  ).    
    (13) 

 
Using Linguistic quantifiers is one the approaches used to 

determine the weights in OWA operators. Here, we assume a 
Regular Increasing Monotonic (RIM) linguistic quantifier  : [0, 1] → [0, 1] such that  (0) = 0 and  (1) = 1, and 
consequently the OWA weighting vector can be computed 
from   using (14) [17]. 
   =  (  ⁄ ) −  (( − 1)  ⁄ ) (14) 
 
Many different choices are existed for selecting the function . 
A popular form is  ( ) =    in which   is the parameter to 
be set. For this function, seven RIM quantifiers are suggested 
in [18] which are demonstrated in Table I. 
 

TABLE I 
FAMILY OF RIM QUANTIFIERS AND THEIR RELEVANT VALUES OF   AND   
Linguistic quantifier Parameter of quantifier ( ) Orness ( ) 
At least one of them  → 0 0.999 

Few of them 0.1 0.909 
Some of them 0.5 0.667 
Half of them 1 0.500 

Many of them 2 0.333 
Most of them 10 0.091 
All of them  → ∞ 0.001 

 
Induced ordered weighted averaging (IOWA) is an 

extension of OWA introduced by Yager and Filev in 1999 
[19]. An IOWA operator is a mapping to aggregate a list of   
2-tuples {〈  ,  〉, … , 〈  ,  〉} with an associated weighting 
vector  = [  , … ,  ] such that   ∈ [0, 1], and ∑       =1 according to the following expression. 

 IOWA(〈  ,  〉, … , 〈  ,  〉) =            ( ) 
    (15) 

 
where  − index( ) denotes the index of the  th largest   . 
C. Concept of Majority Opinion 

As declared in [4] the concept of majority plays a key role 
in group decision making, i.e., in any GDM problem, “it is 
needed to find an overall opinion that satisfies the opinions of 
the majority of the DMs. [4]” OWA aggregators with the 
regular linguistic quantifiers is not ideal for modeling the 
concept of majority, e.g., OWA aggregation with the 
quantifier “most of” produces a value that reflex the 
satisfaction of the proposition “most of the criteria have to be 
satisfied” instead of “the satisfaction value of most of the 
criteria” [4]. For instance, OWA aggregation of the values (1 1 
1 0.5 0 0) with the quantifier “most of” in Fig. 1 results to the 
value 0.35 while the majority opinion is intuitively close to 1. 
Indeed, what we need is an aggregation of the most similar 
opinions. To this end, in [4], a mechanism based on IOWA 
operators with an inducing ordering variable which denotes 
the similarity (proximity) of the elements to be aggregated is 
proposed to model the majority opinion. 

 

 
 
The process described in [4] to obtain the majority opinion 

is as follows. Firstly, a support function    ( , ) which 
represents the support from    for    is defined: 

 

            ,   =  10         −    <    ℎ                        (16) 

 
Next, for each DM, all the supports (by other DMs) are 

summed to get the overall support which is expressed by    
for DM ,  = 1, … , . Then the values   , … ,    are defined:   =   + 1. Subsequently, the elements to be aggregated are 
ordered in the increasing order of similarity (   or   ), and the 
IOWA aggregator is applied to the elements with a new 
formula for computing the weights in (17) and the linguistic 
quantifier ( ) “most of” in Fig. 1. 

   =  (   ⁄ )∑  (   ⁄ )     (17) 

 

 
Fig. 1. A possible definition for the linguistic quantifier “most 
of” 
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where the    values in the above equation are in increasing 
order. For more detailed information, one can see [4]. 
 

III. THE PROPOSED ALGORITHM 
The proposed group fuzzy TOPSIS is the same as the 

original TOPSIS except for the distance measure and the 
mechanism for group aggregation. Indeed, we describe a fuzzy 
distance based on OWA operator and linguistic quantifiers as 
a new distance measure, and also we introduce a novel 
procedure for group aggregation based on the concept of 
majority opinion and IOWA operators. 

A. OWA Based Distance 
According to step 4a in the previous section for TOPSIS 

algorithm, OWA based distance is described as follows:  
 
                     =    (        −       )                             (18) 
and 
 
                     =    (        −       )                             (19) 
 
It can be shown that Manhattan distance leads to the same 
results as OWA-based distance with the RIM quantifier “half 
of” ( = 1). 

B. Majority Opinion Aggregator 
To introduce this aggregator, we use the concept of majority 

opinion explained in section II. However, there is a little 
change in definition of the support function. Indeed, a 
normalizing process for the opinion of DMs is used to put the 
degrees for different alternatives in approximately the same 
range, so selection of the same   for all the alternatives makes 
sense, and also setting the appropriate value for   becomes 
easier. 

Hence, the support function for two DMs   and   is defined 
as follows: 

 

                   ,    =  1                      ∑        <  0             ℎ                           (20) 

 
Then like the procedure in majority opinion model (see 

section II, part C), the DMs opinions are aggregated with the 
IOWA operator in (21) and (22). 

                       =     (⟨    |    ⟩, … ,            )                (21) 
                       =     (⟨    |    ⟩, … ,            )                (22) 
 
Note that IOWA operator is calculated with the linguistic 

quantifier described in (17). 
 

IV. SIMULATION STUDIES 
The case study which is considered in this section is a 

human resource selection problem for a local chemical 

company described in [1]. There are 17 candidates 
(alternatives) and 4 decision makers, and the candidates’ 
qualification is measured through a number of objective and 
subjective tests. The basic data for this experiment is 
demonstrated in Table II and Table III.  Moreover, the weights 
associated to DMs and for each attribute are shown in Table 
IV. This problem is studied in [1] using group TOPSIS 
algorithm with Geometric and Arithmetical mean in an 
internal aggregation scheme. In this section we apply our 
proposed algorithm to solve this problem and we compare the 
results with those in [1]. 

 
TABLE II 

DECISION MATRIX OF HUMAN RESOURCE SELECTION PROBLEM — OBJECTIVE 
ATTRIBUTES [1] 

No. Objective attributes 
Knowledge tests Skill tests 
Language 
test 

Professional 
test 

Safety 
rule test 

Professional 
skills 

Computer 
skills 

1 80 70 87 77 76 
2 85 65 76 80 75 
3 78 90 72 80 85 
4 75 84 69 85 65 
5 84 67 60 75 85 
6 85 78 82 81 79 
7 77 83 74 70 71 
8 78 82 72 80 78 
9 85 90 80 88 90 
10 89 75 79 67 77 
11 65 55 68 62 70 
12 70 64 65 65 60 
13 95 80 70 75 70 
14 70 80 79 80 85 
15 60 78 87 70 66 
16 92 85 88 90 85 
17 86 87 80 70 72 

 

A. Distance Measures Comparison 
In this part, the proposed OWA based distance is compared 

with Euclidean and Manhattan distance. The quantifier “most 
of” in Table I is used for the OWA operator, and geometric 
mean is employed for group aggregation. The results are 
provided in Table V. The difference between relative 
closeness of two consecutive alternatives (in rank) can be used 
to evaluate the confidence of each algorithm, i.e., when the 
calculated relative closeness for two alternatives are very close 
to each other, the DMs might get perplexed for choosing the 
most satisfying one. For this purpose, we introduce three 
measures: 1) sum of the absolute difference between relative 
closeness of the consecutive alternatives, 2) minimum of the 
absolute difference between relative closeness of the 
consecutive alternatives, and 3) the range of calculated relative 
closeness for the alternatives. These measures for each of the 
three abovementioned distance measures are calculated and 
listed in Table VI. It can be observed the proposed OWA 
based distance offers more confidence in this case study. For 
example, the difference between relative closeness of 
alternative 4 and alternative 7 is 0.0003 and 0.0011 for 
Euclidean and Manhattan distance respectively, however, this 
value for OWA based measure is 0.025. 
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TABLE III 

DECISION MATRIX OF HUMAN RESOURCE SELECTION PROBLEM — SUBJECTIVE ATTRIBUTES [1] 
No. Subjective attributes 

DM #1 DM #2 DM #3 DM #4 
Panel 
interview 

1-on-1 
interview 

Panel 
interview 

1-on-1 
interview 

Panel 
interview 

1-on-1 
interview 

Panel 
interview 

1-on-1 
interview 

1 80 75 85  80  75  70 90 85 
2 65  75  60  70  70  77  60  70 
3 90  85  80  85  80  90  90  95 
4 65 70  55  60  68  72  62  72 
5 75  80  75  80  50  55  70  75 
6 80  80  75  85  77  82  75  75 
7 65  70  70  60  65  72  67  75 
8 70 60 75 65 75 67 82 75 
9 80 85 95 85 90 85 90 85 
10 70 75 75 80 68 78 65 92 
11 50 60 62 65 60 65 65 70 
12 60 65 65 75 50 60 45 50 
13 75 75 80 80 65 75 70 75 
14 80 70 75 72 80 70 75 75 
15 70 65 75 70 65 70 60 65 
16 90 95 92 90 85 80 88 90 
17 80 85 70 75 75 80 70 75 

 
TABLE IV 

WEIGHTS ON ATTRIBUTES OF HUMAN RESOURCE SELECTION PROBLEM [1] 
No. Attributes The weights of group 

DM #1 DM #2 DM #3 DM #4 
 Knowledge test     
1 Language test 0.066  0.042  0.060  0.047 
2 Professional test 0.196  0.112  0.134  0.109 
3 Safety rule test 0.066  0.082  0.051  0.037 
 Skill tests     
4 Professional skills 0.130  0.176  0.167  0.133 
5 Computer skills 0.130  0.118  0.100  0.081 
 Interviews     
6 Panel interview 0.216  0.215  0.203  0.267 
7 1-on-1 interview 0.196  0.255  0.285  0.326 

 
 

TABLE V 
COMPARISON BETWEEN DIFFERENT DISTANCE MEASURES 

No. 
Manhattan distance Euclidean distance OWA based distance   ∗ Rank   ∗ Rank   ∗ Rank 

1 0.6369 5 0.6271 5 0.5954 5 
2 0.4462 11 0.4404 14 0.4407 14 
3 0.8361 3 0.7860 3 0.7852 3 
4 0.4393 13 0.4526 12 0.4522 13 
5 0.4445 12 0.4659 11 0.5322 9 
6 0.6697 4 0.6611 4 0.6591 4 
7 0.4383 14 0.4523 13 0.4550 12 
8 0.5683 8 0.5700 8 0.5012 11 
9 0.9131 2 0.8797 2 0.8963 2 
10 0.5075 10 0.5080 10 0.5062 10 
11 0.1636 16 0.2096 16 0.1707 16 
12 0.1322 17 0.1677 17 0.1426 17 
13 0.5578 9 0.5568 9 0.5562 8 
14 0.6033 6 0.5924 6 0.5936 6 
15 0.3941 15 0.4091 15 0.4077 15 
16 0.9200 1 0.8959 1 0.9113 1 
17 0.5975 7 0.5920 7 0.5907 7 

Note: Group aggregator is geometric mean for all the cases 
 

B. Aggregation Comparison 
In this part, we compare our majority aggregation scheme 

with geometric mean and arithmetic mean. Table VII shows 
the results for the case of Euclidean distance and different 
group decision making aggregators. For the majority 
aggregator,   is set to 0.1, and the “most of” quantifier in Fig. 
1 is employed. Comparing geometric/arithmetical mean and 
majority aggregator, two significant changes in the order of 
the alternatives are detected. Rank of candidate 5 is changed 
from 11 to 9, and rank of candidate 8 is changed from 8 to 11. 
The reason for these changes can be found in Table III, taking 
more detailed investigation in data for candidate 5 and 8. It 
can be observed that the score of DM3 for alternative 5 in the 
interviews is much lower than other DMs, hence in the 
majority opinion procedure, the effect of his opinion becomes 
faint. On the other hand, for candidate 8, there is a problem 
with DM4 whose given score for the interviews is much more 
than other DMs. 

TABLE VI 
CONFIDENCE MEASURES FOR DIFFERENT DISTANCE MEASURES 

Measure 
no. Manhattan distance Euclidean distance OWA based distance 

1 0.7879 0.7282 0.8291 
2 0.0011 0.0003 0.0013 
3 [0.1322 0.9201] [0.1678 0.8960] [0.0997 0.9288] 

Note: Group aggregator is geometric mean for all the cases 
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TABLE VII 
COMPARISON BETWEEN DIFFERENT GROUP AGGREGATORS 

No. Arithmetical mean Geometric mean Majority Opinion   ∗ Rank   ∗ Rank   ∗ Rank 
1 0.6295 5 0.6271 5 0.5954 5 
2 0.4407 14 0.4404 14 0.4407 14 
3 0.7583 3 0.7860 3 0.7852 3 
4 0.4523 13 0.4526 12 0.4522 13 
5 0.4651 11 0.4659 11 0.5322 9 
6 0.6591 4 0.6611 4 0.6591 4 
7 0.4551 12 0.4523 13 0.4550 12 
8 0.5692 8 0.5700 8 0.5012 11 
9 0.8749 2 0.8797 2 0.8963 2 
10 0.5063 10 0.5080 10 0.5062 10 
11 0.2302 16 0.2096 16 0.1707 16 
12 0.1745 17 0.1677 17 0.1426 17 
13 0.5562 9 0.5568 9 0.5562 8 
14 0.5936 6 0.5924 6 0.5936 6 
15 0.4077 15 0.4091 15 0.4077 15 
16 0.8905 1 0.8959 1 0.9113 1 
17 0.5908 7 0.5920 7 0.5907 7 

Note: Distance measure is Euclidean distance for all the cases 

C. OWA based distance and Majority Aggregation 
In this part, the whole procedure for the proposed group 

fuzzy TOPSIS with OWA based distance and majority opinion 
aggregation is applied to the human resource selection 
problem. For OWA operator in distance measure, the “most 
of” quantifier in Table I is used, while for the majority 
aggregator the “most of” quantifier in Fig. 1 is exploited, and   is set to 0.2. The results are listed in Table VIII. Also, the 
confidence measures described in part A are calculated for this 
experiment and compared with those for experiments of part A 
and B in Table IX. It can be observed that our proposed 
algorithm leads to more confidence. 
 

TABLE VIII 
THE RELATIVE CLOSENESS BY GROUP FUZZY TOPSIS 

No.                   ∗    Rank 
1 0.0070 0.0136 0.6592 5 
2 0.0116 0.0090 0.4378 12 
3 0.0030 0.0176 0.8535 3 
4 0.0126 0.0096 0.4320 13 
5 0.0090 0.0117 0.5639 8 
6 0.0069 0.0136 0.6629 4 
7 0.0123 0.0083 0.4037 14 
8 0.0094 0.0083 0.4673 11 
9 0.0013 0.0187 0.9318 2 
10 0.0104 0.0101 0.4923 10 
11 0.0159 0.0030 0.1624 16 
12 0.0179 0.0018 0.0919 17 
13 0.0097 0.0109 0.5296 9 
14 0.0084 0.0121 0.5903 6 
15 0.0129 0.0076 0.3707 15 
16 0.0009 0.0188 0.9530 1 
17 0.0089 0.0117 0.5676 7 

Note: Group aggregator is majority opinion and distance measure is OWA 
based distance  

V. CONCLUSION 
In this paper, an algorithm for MCDM in group decision 

environment is presented. The main framework for the 
proposed method is TOPSIS which is a popular algorithm for 
MCDM. Indeed, the original TOPSIS is modified for GDM 

with an OWA based quantifier guided distance metric and a 
majority opinion group aggregator. A human resource 
selection problem is studied with the proposed algorithm, and 
the results of decision making are provided. The results show 
that the proposed algorithm outperforms the original group 
TOPSIS in both reflecting the concept of majority to have a 
better consensual judgment for the individual opinions and 
providing more confidence for the final decision. 

 
TABLE IX 

CONFIDENCE MEASURES FOR DIFFERENT DISTANCES AND GROUP 
AGGREGATORS 

Measure 
no. 

Euclidean Distance OWA based Distance 
Geometric 

mean 
Majority 
opinion 

Geometric 
mean 

Majority 
opinion 

1 0.7282 0.7687 0.8291 0.8611 
2 0.0003 0.0018 0.0013 0.0037 
3 [0.168 0.896] [0.143 0.911] [0.10 .929] [0.092 0.953] 
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