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Abstract—In this study, an automatic dynamic coverage 

control problem is introduced and a hierarchical multiagent 
reinforcement learnig (HMRL) algorithm based on MAXQ 
framework is employed to solve the problem. Hierarchical 
reinforcement learning (HRL) is a state-of-the-art topic in 
domain of multi-agent reinforcement learning, and most of the 
investigations in HRL have been engaged with theoretical issues 
to develop the mathematical basics and clarify the concepts. In 
the present work, we consider an applied problem and investigate 
the performance of the proposed learning algorithms. Simulation 
results show that the presented hierarchical framework is much 
more efficient that the flat cases in both quality of learning and 
speed of convergence. 

 
Index Terms—Hierarchical Reinforcement Learning, Multi-

Agent Systems, Coverage Control, Cooperative Control. 
 

I. INTRODUCTION 
ENFORCEMENT learning which is defined as learning from 
interaction, has achieved high success in solving problems 

in machine learning. However, the tabular reinforcement 
learning methods suffer from the curse of dimensionality 
which means the exponential growth of computational and 
memory requirements with the number of state variables. It is 
more challenging when we are facing the problems in 
multiagent systems where the number of states increases 
drastically by the number of agents. 

One of the approaches to come up with the curse of 
dimensionality is hierarchical representation of problems to 
changing the flat space to a hierarchy of simpler spaces and 
introduces mechanisms for abstraction and sharing of 
subtasks. Using a hierarchy in reinforcement learning has 
three main benefits. First, learning will be done in fewer trials 
because fewer parameters must be learned. In addition, 
abstraction can be used to ignore irrelevant information in 
states of subtasks (it can help in the case of partially 
observable agents or lack of complete sensing). Also, learned 
subtasks can be shared between some parent subtasks. Second, 
learned subtasks can be reused for a new problem. Third, the 
exploration will be improved due to existence of high-level 
actions that can search a larger space in one step. 

 
Report was prepared March 6, 2009.  
H. Hajimirsadeghi is a M.Sc. student of Control Engineering in the school 

of Electrical and Computer Engineering, University of Tehran, (Std. No. 
810187579; e-mail: h.hajimirsadeghi@ece.ut.ac.ir). 

In multiagent systems, the hierarchical framework can help 
to decrease the cost of coordination and communication, i.e., 
in many applications, the agents need to be aware of other 
agents’ actions only in high levels of decision making. Also, 
the partially observability of the agents about states of each 
other can be addressed in a hierarchical representation. 

As it is stated in [5] there has been insufficient experience 
in experimentally testing the effectiveness of the ideas in HRL 
on large applications. In this study, we employ hierarchical 
multiagent reinforcement learning procedure described in [1] 
and [2] in an automatic coverage control problem which is 
known to be an important problem in the field of cooperative 
control. Cooperative HRL and Selfish Multiagent HRL 
algorithms are used and their performance is evaluated in a 
test problem. 

Section II provides a quick review of Hierarchical 
Reinforcemnt Learning (HRL) with more emphasis on MAXQ 
approach. In section III, the coverage control problem is 
described and the hierarchical framework for that is presented. 
In section IV, a test problem is introduced and the simulation 
results are summarized. Finally, the conclusions are drawn in 
section V. 

 

II. HIERARCHICAL MULTI-AGENT REINFORCEMENT 
LEARNING 

A. Hierarchical Reinforcement Learning 
Research in HRL is based on the formalism of Semi-Markov 

Decision Processes (SMDPs), which is an extension of the 
Markov Decision Process (MDP) formalism. SMDPs allow 
for temporally extended actions, i.e. actions that can take 
variable amounts of time as opposed to a fixed interval. Action 
selections are made at distinct epochs in time, and the state of 
the system may continue changing during the action. An 
SMDP is defined as a quintuple  = 〈 , , , , 〉, where   is 
a finite set of states (the state space),   is a finite set of actions 
(the action space),   is the transition probability function  :  ×  ×  × ℕ → [0, 1] ,   is the reward function  :  × ×  → ℝ, and   is the transition time function  :  ×  × → ℕ. The transition probability function  (  , | , ) is the 
probability of transitioning to state    in   time steps, given 
that action   is taken in state   . The reward function  (  | , ) is the real-valued reward for taking action   in state   and reaching state   . The transition time function  (  | ,  ) 
is the completion time for taking action   in state   and 
reaching state   . A policy   is a function  :  →  , defining 
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what action the agent takes in any given state. 
One of the most commonly used approaches in hierarchical 

reinforcement learning is MAX-Q method. MAXQ approach 
works with decomposing the whole task into a set of subtasks, 
which are in turn decomposed into smaller subtasks. This 
structure forms a hierarchy whose leaves are primitive actions. 
This method is analogous to the introduction of subroutines in 
programming, but the order in which subtasks are executed is 
arbitrary. Once the programmer defines the hierarchy, this is 
the reinforcement learning system that will write the code for 
each subroutine. Each subtask has some termination 
conditions. These are the conditions that once fulfilled the 
control of program returns to the parent subtask. Termination 
conditions are not necessarily desirable conditions. For 
example, an inappropriate invoking of a subtask by the 
reinforcement learning system can also bring it to a 
termination condition. The desired subset of termination 
conditions, i.e. the conditions that show the successful 
invoking and performing of the subtask, are called goals. 

A hierarchy can be represented by a task graph. The first 
component is the expected total reward received while 
executing action   in state   and following policy   denoted 
by   ( ,  ), and the second component is the expected total 
reward of completing parent task   following policy   after   
finished denoted by   ( ,  ,  ) and called completion 
function. Thus, we have: 

   ( ,  , ) =   ( ,  ) +   ( ,  ,  )     (1) 
 
where  

   ( ,  , ) = ∑      , (  , | , )    ( ,   , (  ))   (2)  
 
and 
 

   ( ,  ) =    ( ,  , (  ))                             (  | ,  ) (  | ,  )                              (3) 

  
Equation (1) shows the relation of action-value functions of 

a parent task to the action-value functions of its child tasks. 
Applied recursively, it shows how we can decompose the 
action-value function of the root task into summation of 
action-value functions of its descendant subtasks. In Theorem 
2 of [4], it is shown that this decomposition can represent the 
value function of any hierarchical policy. The most popular 
learning algorithm for MAXQ decomposition is MAXQ-Q 
learning algorithm [3], [4], that we use the multiagent form of 
that described in [1] and [2].  

B. Hierarchical Multi-Agent Reinforcement Learning 
Makar et al. modified single agent framework of MAXQ 

approach for multiagent systems. In this respect, two learning 
approaches can be considered: selfish case and cooperative 
case. In selfish case, the learning agents learn with the given 
MAXQ structure but make no attempts to communicate with 
each other while in the cooperative case, the MAXQ structure 
is modified such that the Q nodes at the cooperation levels 
include the joint actions done by all the agents. The subtasks 

in cooperation level are called cooperative subtasks and the 
cooperation level is defined to be the level in which 
coordination among agents is of great importance. 
Cooperation levels are usually placed at the highest levels of 
the task graph. 

Based on MAXQ function decomposition of the Q-
functions with joint actions for cooperative subtasks, a 
learning algorithm is proposed in [1] called Cooperative HRL 
algorithm which is provided in Appendix A. 

 

III. PROBLEM DESCRIPTION 

A. Coverage Control Problem 
Consider a set of sensors  =    ,   , … ,      located in an 

area in order to estimate a set of desired variables  =   ,  , … ,     for a set of targets  =    ,  , … ,    . Each 
sensor    is specialized to estimate one variable in its finite 
range of detection   . A number of stations (agents) are 
distributed in the area to perform the task of switching the 
sensors on or off based on the request of a central unit, i.e., the 
center asks for sensing coverage of a specified variable in all 
the targets based on its requirements, and the agents make the 
sensors on to fulfill the task and then inform the center that the 
coverage is completed. Each agent has access to a limited 
subset of sensors in    and its sensors might have different 
characteristics like better estimation quality or larger range of 
detection that make the agents heterogeneous. In this section, 
we want to devise a learning algorithm to enhance the 
proficiency of autonomous agents for switching the sensors 
based on the requests. It is assumed that the agents receive a 
binary (to cover or not to cover) signal from the central unit 
for coverage of each variable. Moreover, they can sense the 
coverage status for each pair of target and variable. The agents 
are unaware of the relations between the signals and the 
variables, and they are to find out the relations through the 
learning process. Also, they should learn to switch the 
minimum number of sensors for covering all the targets as 
well as to inform accomplishment of the task to the center 
accurately and instantly. Since the sensing coverage is 
performed by multiple agents, the coordination between the 
agents is of great importance.  

In the flat form, the state space for each agent consists of 2 
values for center request of each variable (2  ), 2 values for 
coverage status of each target and variable pair (2    ). Hence 
the total number of states is 2  × 2    , and consequently 
there are 2  × 2    × (   +   + 1) values for the Q-table 
of each agent (possible actions for each agent are switching 
the sensors on, informing the center about coverage 
accomplishment of each variable, and the remaining action is 
NOP (no operation)). Where     is the number of sensors for 
agent  . With the hierarchical framework we show that the 
number of learning values is considerably reduced. 

B. HARL Framework 
In this part a hierarchical reinforcement learning framework 

is presented for the proposed coverage control problem. The 
hierarchical model with subtasks and primitive actions are 
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illustrated in Fig. 2. Generally, there are three composite 
subtasks consists of Root, Perform (  ), and Cover (  ). 
Perform (  ) represents the subtask of covering the variable    
in all targets and then informing the central unit. Cover (  ) 
means to switch the sensors for variable    on so that the    is 
covered in all the targets. The primitive actions are the same 
as the flat case described above. Root is defined as a 
cooperative subtask, and the highest level of the hierarchy as 
the cooperative level. So, all the subtasks at the second level 
of hierarchy (Perform (  ) and NOP) belong to set   (children 
of cooperative subtask) and coordination among the agents is 
fulfilled by using joint action-values at the Root level as 
explained in section II. 
 

 
 

State abstraction can reduce the state space for this problem 
considerably, i.e., only the relevant states are used for each 
node of the task graph. We employed state abstraction as 
follows. For Cover (  ) subtask only the coverage status of 
variable    in the targets are relevant. For the highest level 
subtask Perform (  ) only the coverage status of variable    in 
the targets and the request signal from the center are relevant. 
Hence, the state abstraction can be employed to reduce the 
number of learning values in C and V functions and speed up 
the algorithm. Similar to the flat case, there is a default reward 
of -1 for every primitive action and a positive reward is given 
by the central unit to the agents who correctly inform coverage 
of a desired variable. In this study this reward is equal to       _         where    _         denotes the number of on-sensors 

of desired variable   in the area. 
 

IV. SIMULATION STUDIES 

A. Test Problem 
In this part, we introduce a test problem for the coverage 

control problem described above. There are 5 targets and 2 
variables, e.g., temperature (T) and pressure (P). Thirty two 
sensors are devoted to each agent, sixteen of that are 
temperature sensors and the remaining are pressure sensors. In 
this problem, it is assumed that the agents do not have 
common sensors. This configuration of sensors in the area is 
illustrated in Fig. 2, and the task graph for this test problem is 
presented in Fig. 3. 

  

 
 

 
 

Each node in the figure represents four sensors, two of them 
are T and P sensors for agent 1, and the others are T and P 
sensors for agent 2. In fact, in this problem the sensors are 
uniformly distributed in the area but this symmetry is just for 
simplicity of simulating the environment and is not required 
for the learning process we propose in the next part. In this test 
problem the metric that makes our agents heterogeneous is the 
finite range of detection for their sensors which is 
characterized in Table I. The sensing coverage is performed in 
finite rage of sensors which is formulated in (4).  

                                             −   ≤                                                 . .           (4) 

 
where   can be any point in the pilot area and    is the 
location of the sensor   . One can see that agent 1 has more 
powerful sensors for sensing temperature than pressure while 
agent 2 is better provided by pressure sensors. It can be shown 
simply that agent 1 can cover the temperature variable for all 
the targets with three sensors (sensors   ,  ,   ,   , {  ,    or   ,   }) at the minimum while it needs five sensors for pressure 
coverage. Likewise, agent 2 can perform pressure coverage 
with at least three sensors (  ,  ,   ,  , {  ,    or   ,   }) while it 
needs five sensors for temperature coverage.  

 
 
 
 

 
 
 
 
 
 
 
 
 
 

Fig. 3. Task graph for the test problem 

 
Fig. 2. Configuration of sensors and targets in  _  plane. 

 
 
 
 
 
 
 
 
 
 

Fig. 1. Task graph for multi-agent dynamic coverage control problem 
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TABLE I 

FINITE RANGE OF DETECTION FOR THE SENSORS OF AGENT1 AND AGENT2 
Agent 1 Agent 2 

T 
sensors range P 

sensors range T 
sensors range P 

sensors range 

1 8 1 8 1 8 1 8 
2 8 2 8 2 8 2 8 
3 25 3 8 3 8 3 8 
4 8 4 8 4 8 4 8 
5 8 5 8 5 8 5 8 
6 8 6 8 6 8 6 8 
7 8 7 8 7 8 7 25 
8 8 8 8 8 8 8 8 
9 8 9 8 9 8 9 25 
10 25 10 8 10 8 10 8 
11 8 11 8 11 8 11 8 
12 8 12 8 12 8 12 8 
13 8 13 8 13 8 13 8 
14 8 14 8 14 8 14 8 
15 8 15 8 15 8 15 25 
16 25 16 8 16 8 16 8 
 

B. Simulation Results 
In this part, detailed experimental results on the coverage 

control problem is presented, comparing several learning 
algorithms, including Cooperative HRL, selfish multi-agent 
HRL, decentralized Q-learning and centralized Q-leaning. The 
number of learning values for the flat case is 143,360 for 
decentralized Q-learning and 272,432 for centralized Q-
learning. With state abstraction of the proposed hierarchical 
framework, the number of learning variables (in C and V 
functions) is reduced to 14,600 for cooperative HRL 
algorithm. The discount factor is set to 0.99, the learning rate   is 0.1 and the value of   for  -greedy policy of the learning 
algorithms is initialized at 0.1 and decreases by a factor of      
every 100 steps. Note that we did not try to find the best 
parameters for each algorithm. In order to have better 
interpretation of the results, the first experiment is executed 
with the request signal generation as follows: the request 
signal for both T and P variables are set to 1 at the first of each 
learning episode and no new request is invoked until all the 
tasks are satisfied, after which the requests are refreshed to 1. 
In this experiment, the goal is to increase the throughput of the 
system which is measured by the number of successful 
accomplishment per 5000 steps. The results are averaged over 
five trials and demonstrated in Fig. 4. Also, the best trial 
among the five trials for Cooperative HRL agent and Selfish 
Multiagent HRL agent are selected and provided in Fig. 5. 

Fig. 4 and Fig. 5 show that Cooperative HRL has a good 
performance and the algorithm has found the best order of 
setting the sensors and informing the center. Indeed, the 
throughput of system approximately converges to 1250 
successful accomplishment in 5000 steps which is equivalent 
to switching on the minimum number of the sensors by each 
agent (as was discussed it can be achieved by three sensors) 
plus one action of informing the center, i.e.      = 1250. 
Actually, we used the above-mentioned request signal 
generation mechanism to be able to calculate the throughput of 

the system. The abrupt raise or fall of learning performance in 
selfish multi-agent HRL might be because of lack of 
coordination that can happen when policy of one of the agents 
changes.  The poor performance of centralized multi-agent Q-
learning is because of the large number of learning values 
which decrease speed of learning. Fig. 6 shows that learning 
can be improved for centralized multi-agent Q-learning 
algorithm with larger values of  , however, learning still is not 
mature with the specified number of steps. 

 

 
 

 

 
Finally, we performed an experiment with random request 

signal generator and the results for Cooperative HRL 
algorithm is depicted in Fig. 7.  

 
Fig. 5. Configuration of sensors and targets in  _  plane. 

 
Fig. 4. Comparison between throughput of different algorithms 

 
Fig. 6. Throughput of the system for centralized Q-learning with 

larger  . 
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V. CONCLUSION 
In this study, a dynamic coverage control problem with 

autonomous agents and a set of sensors was described. A 
hierarchical framework for the process of learning in agents 
was presented, and two hierarchal multiagent reinforcement 
learning algorithms were employed to solve the problem. We 
compared the results of hierarchical algorithms (Cooperative 
HRL and Selfish Multiagent HRL) with multiagent classical 
RL algorithms for flat cases including centralized and 
decentralized Q-learning. The hierarchical algorithms were 
much superior to the flat algorithms in both learning speed and 
throughput of the system. Also, the hierarchical approach 
could help in significant decrease of state space and learning 
variables. 
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Fig. 7. Throughput of a Cooperative HRL agent in a random request 
signal generation system 
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I. APPENDICES 

A. The Cooperative HRL Algorithm [1] 
 
 

 


