
MACHINE LEARNING COURSE / Fall 2008

1

Abstract—In this study, an automatic dynamic coverage

control problem is introduced and a hierarchical multiagent
reinforcement learnig (HMRL) algorithm based on MAXQ
framework is employed to solve the problem. Hierarchical
reinforcement learning (HRL) is a state-of-the-art topic in
domain of multi-agent reinforcement learning, and most of the
investigations in HRL have been engaged with theoretical issues
to develop the mathematical basics and clarify the concepts. In
the present work, we consider an applied problem and investigate
the performance of the proposed learning algorithms. Simulation
results show that the presented hierarchical framework is much
more efficient that the flat cases in both quality of learning and
speed of convergence.

Index Terms—Hierarchical Reinforcement Learning, Multi-

Agent Systems, Coverage Control, Cooperative Control.

I. INTRODUCTION
ENFORCEMENT learning which is defined as learning from
interaction, has achieved high success in solving problems

in machine learning. However, the tabular reinforcement
learning methods suffer from the curse of dimensionality
which means the exponential growth of computational and
memory requirements with the number of state variables. It is
more challenging when we are facing the problems in
multiagent systems where the number of states increases
drastically by the number of agents.

One of the approaches to come up with the curse of
dimensionality is hierarchical representation of problems to
changing the flat space to a hierarchy of simpler spaces and
introduces mechanisms for abstraction and sharing of
subtasks. Using a hierarchy in reinforcement learning has
three main benefits. First, learning will be done in fewer trials
because fewer parameters must be learned. In addition,
abstraction can be used to ignore irrelevant information in
states of subtasks (it can help in the case of partially
observable agents or lack of complete sensing). Also, learned
subtasks can be shared between some parent subtasks. Second,
learned subtasks can be reused for a new problem. Third, the
exploration will be improved due to existence of high-level
actions that can search a larger space in one step.

Report was prepared March 6, 2009.
H. Hajimirsadeghi is a M.Sc. student of Control Engineering in the school

of Electrical and Computer Engineering, University of Tehran, (Std. No.
810187579; e-mail: h.hajimirsadeghi@ece.ut.ac.ir).

In multiagent systems, the hierarchical framework can help
to decrease the cost of coordination and communication, i.e.,
in many applications, the agents need to be aware of other
agents’ actions only in high levels of decision making. Also,
the partially observability of the agents about states of each
other can be addressed in a hierarchical representation.

As it is stated in [5] there has been insufficient experience
in experimentally testing the effectiveness of the ideas in HRL
on large applications. In this study, we employ hierarchical
multiagent reinforcement learning procedure described in [1]
and [2] in an automatic coverage control problem which is
known to be an important problem in the field of cooperative
control. Cooperative HRL and Selfish Multiagent HRL
algorithms are used and their performance is evaluated in a
test problem.

Section II provides a quick review of Hierarchical
Reinforcemnt Learning (HRL) with more emphasis on MAXQ
approach. In section III, the coverage control problem is
described and the hierarchical framework for that is presented.
In section IV, a test problem is introduced and the simulation
results are summarized. Finally, the conclusions are drawn in
section V.

II. HIERARCHICAL MULTI-AGENT REINFORCEMENT
LEARNING

A. Hierarchical Reinforcement Learning
Research in HRL is based on the formalism of Semi-Markov

Decision Processes (SMDPs), which is an extension of the
Markov Decision Process (MDP) formalism. SMDPs allow
for temporally extended actions, i.e. actions that can take
variable amounts of time as opposed to a fixed interval. Action
selections are made at distinct epochs in time, and the state of
the system may continue changing during the action. An
SMDP is defined as a quintuple = 〈 , , , , 〉, where is
a finite set of states (the state space), is a finite set of actions
(the action space), is the transition probability function : × × × ℕ → [0, 1] , is the reward function : × × → ℝ, and is the transition time function : × × → ℕ. The transition probability function (, | ,) is the
probability of transitioning to state in time steps, given
that action is taken in state . The reward function (| ,) is the real-valued reward for taking action in state and reaching state . The transition time function (| ,)
is the completion time for taking action in state and
reaching state . A policy is a function : → , defining

Hierarchical Multi-Agent Reinforcement
Learning for Dynamic Coverage Control

Hossein Hajimirsadeghi

R

mailto:h.hajimirsadeghi@ece.ut.ac.ir)

MACHINE LEARNING COURSE / Fall 2008

2

what action the agent takes in any given state.
One of the most commonly used approaches in hierarchical

reinforcement learning is MAX-Q method. MAXQ approach
works with decomposing the whole task into a set of subtasks,
which are in turn decomposed into smaller subtasks. This
structure forms a hierarchy whose leaves are primitive actions.
This method is analogous to the introduction of subroutines in
programming, but the order in which subtasks are executed is
arbitrary. Once the programmer defines the hierarchy, this is
the reinforcement learning system that will write the code for
each subroutine. Each subtask has some termination
conditions. These are the conditions that once fulfilled the
control of program returns to the parent subtask. Termination
conditions are not necessarily desirable conditions. For
example, an inappropriate invoking of a subtask by the
reinforcement learning system can also bring it to a
termination condition. The desired subset of termination
conditions, i.e. the conditions that show the successful
invoking and performing of the subtask, are called goals.

A hierarchy can be represented by a task graph. The first
component is the expected total reward received while
executing action in state and following policy denoted
by (,), and the second component is the expected total
reward of completing parent task following policy after
finished denoted by (, ,) and called completion
function. Thus, we have:

 (, ,) = (,) + (, ,) (1)

where

 (, ,) = ∑ , (, | ,) (, , ()) (2)

and

 (,) = (, , ()) (| ,) (| ,) (3)

Equation (1) shows the relation of action-value functions of

a parent task to the action-value functions of its child tasks.
Applied recursively, it shows how we can decompose the
action-value function of the root task into summation of
action-value functions of its descendant subtasks. In Theorem
2 of [4], it is shown that this decomposition can represent the
value function of any hierarchical policy. The most popular
learning algorithm for MAXQ decomposition is MAXQ-Q
learning algorithm [3], [4], that we use the multiagent form of
that described in [1] and [2].

B. Hierarchical Multi-Agent Reinforcement Learning
Makar et al. modified single agent framework of MAXQ

approach for multiagent systems. In this respect, two learning
approaches can be considered: selfish case and cooperative
case. In selfish case, the learning agents learn with the given
MAXQ structure but make no attempts to communicate with
each other while in the cooperative case, the MAXQ structure
is modified such that the Q nodes at the cooperation levels
include the joint actions done by all the agents. The subtasks

in cooperation level are called cooperative subtasks and the
cooperation level is defined to be the level in which
coordination among agents is of great importance.
Cooperation levels are usually placed at the highest levels of
the task graph.

Based on MAXQ function decomposition of the Q-
functions with joint actions for cooperative subtasks, a
learning algorithm is proposed in [1] called Cooperative HRL
algorithm which is provided in Appendix A.

III. PROBLEM DESCRIPTION

A. Coverage Control Problem
Consider a set of sensors = , , … , located in an

area in order to estimate a set of desired variables = , , … , for a set of targets = , , … , . Each
sensor is specialized to estimate one variable in its finite
range of detection . A number of stations (agents) are
distributed in the area to perform the task of switching the
sensors on or off based on the request of a central unit, i.e., the
center asks for sensing coverage of a specified variable in all
the targets based on its requirements, and the agents make the
sensors on to fulfill the task and then inform the center that the
coverage is completed. Each agent has access to a limited
subset of sensors in and its sensors might have different
characteristics like better estimation quality or larger range of
detection that make the agents heterogeneous. In this section,
we want to devise a learning algorithm to enhance the
proficiency of autonomous agents for switching the sensors
based on the requests. It is assumed that the agents receive a
binary (to cover or not to cover) signal from the central unit
for coverage of each variable. Moreover, they can sense the
coverage status for each pair of target and variable. The agents
are unaware of the relations between the signals and the
variables, and they are to find out the relations through the
learning process. Also, they should learn to switch the
minimum number of sensors for covering all the targets as
well as to inform accomplishment of the task to the center
accurately and instantly. Since the sensing coverage is
performed by multiple agents, the coordination between the
agents is of great importance.

In the flat form, the state space for each agent consists of 2
values for center request of each variable (2), 2 values for
coverage status of each target and variable pair (2). Hence
the total number of states is 2 × 2 , and consequently
there are 2 × 2 × (+ + 1) values for the Q-table
of each agent (possible actions for each agent are switching
the sensors on, informing the center about coverage
accomplishment of each variable, and the remaining action is
NOP (no operation)). Where is the number of sensors for
agent . With the hierarchical framework we show that the
number of learning values is considerably reduced.

B. HARL Framework
In this part a hierarchical reinforcement learning framework

is presented for the proposed coverage control problem. The
hierarchical model with subtasks and primitive actions are

MACHINE LEARNING COURSE / Fall 2008

3

illustrated in Fig. 2. Generally, there are three composite
subtasks consists of Root, Perform (), and Cover ().
Perform () represents the subtask of covering the variable
in all targets and then informing the central unit. Cover ()
means to switch the sensors for variable on so that the is
covered in all the targets. The primitive actions are the same
as the flat case described above. Root is defined as a
cooperative subtask, and the highest level of the hierarchy as
the cooperative level. So, all the subtasks at the second level
of hierarchy (Perform () and NOP) belong to set (children
of cooperative subtask) and coordination among the agents is
fulfilled by using joint action-values at the Root level as
explained in section II.

State abstraction can reduce the state space for this problem
considerably, i.e., only the relevant states are used for each
node of the task graph. We employed state abstraction as
follows. For Cover () subtask only the coverage status of
variable in the targets are relevant. For the highest level
subtask Perform () only the coverage status of variable in
the targets and the request signal from the center are relevant.
Hence, the state abstraction can be employed to reduce the
number of learning values in C and V functions and speed up
the algorithm. Similar to the flat case, there is a default reward
of -1 for every primitive action and a positive reward is given
by the central unit to the agents who correctly inform coverage
of a desired variable. In this study this reward is equal to _ where _ denotes the number of on-sensors

of desired variable in the area.

IV. SIMULATION STUDIES

A. Test Problem
In this part, we introduce a test problem for the coverage

control problem described above. There are 5 targets and 2
variables, e.g., temperature (T) and pressure (P). Thirty two
sensors are devoted to each agent, sixteen of that are
temperature sensors and the remaining are pressure sensors. In
this problem, it is assumed that the agents do not have
common sensors. This configuration of sensors in the area is
illustrated in Fig. 2, and the task graph for this test problem is
presented in Fig. 3.

Each node in the figure represents four sensors, two of them
are T and P sensors for agent 1, and the others are T and P
sensors for agent 2. In fact, in this problem the sensors are
uniformly distributed in the area but this symmetry is just for
simplicity of simulating the environment and is not required
for the learning process we propose in the next part. In this test
problem the metric that makes our agents heterogeneous is the
finite range of detection for their sensors which is
characterized in Table I. The sensing coverage is performed in
finite rage of sensors which is formulated in (4).

 − ≤ . . (4)

where can be any point in the pilot area and is the
location of the sensor . One can see that agent 1 has more
powerful sensors for sensing temperature than pressure while
agent 2 is better provided by pressure sensors. It can be shown
simply that agent 1 can cover the temperature variable for all
the targets with three sensors (sensors , , , , { , or , }) at the minimum while it needs five sensors for pressure
coverage. Likewise, agent 2 can perform pressure coverage
with at least three sensors (, , , , { , or , }) while it
needs five sensors for temperature coverage.

Fig. 3. Task graph for the test problem

Fig. 2. Configuration of sensors and targets in _ plane.

Fig. 1. Task graph for multi-agent dynamic coverage control problem

1U = Children of

cooperative
 subtask

1U = Children of
cooperative subtask

…

Cooperation level

Cooperative subtask

Root

Perform (T)

Perform (P)

NOP

Cover (T)

Inform (T)

Inform (P)

Cover (P)

Switch (
TS1)

On
Switch (

TS1)
On

Switch (
PS1)

On
Switch (

PS1)
On

Root

Perform (iV) NOP

Cover (iV) Inform (iV)

Switch (1
1
VS) On Switch (1

1
VS) On Switch (1

1
VS) on

Cooperative subtask Cooperation level

… …

MACHINE LEARNING COURSE / Fall 2008

4

TABLE I

FINITE RANGE OF DETECTION FOR THE SENSORS OF AGENT1 AND AGENT2
Agent 1 Agent 2

T
sensors range P

sensors range T
sensors range P

sensors range

1 8 1 8 1 8 1 8
2 8 2 8 2 8 2 8
3 25 3 8 3 8 3 8
4 8 4 8 4 8 4 8
5 8 5 8 5 8 5 8
6 8 6 8 6 8 6 8
7 8 7 8 7 8 7 25
8 8 8 8 8 8 8 8
9 8 9 8 9 8 9 25
10 25 10 8 10 8 10 8
11 8 11 8 11 8 11 8
12 8 12 8 12 8 12 8
13 8 13 8 13 8 13 8
14 8 14 8 14 8 14 8
15 8 15 8 15 8 15 25
16 25 16 8 16 8 16 8

B. Simulation Results
In this part, detailed experimental results on the coverage

control problem is presented, comparing several learning
algorithms, including Cooperative HRL, selfish multi-agent
HRL, decentralized Q-learning and centralized Q-leaning. The
number of learning values for the flat case is 143,360 for
decentralized Q-learning and 272,432 for centralized Q-
learning. With state abstraction of the proposed hierarchical
framework, the number of learning variables (in C and V
functions) is reduced to 14,600 for cooperative HRL
algorithm. The discount factor is set to 0.99, the learning rate is 0.1 and the value of for -greedy policy of the learning
algorithms is initialized at 0.1 and decreases by a factor of
every 100 steps. Note that we did not try to find the best
parameters for each algorithm. In order to have better
interpretation of the results, the first experiment is executed
with the request signal generation as follows: the request
signal for both T and P variables are set to 1 at the first of each
learning episode and no new request is invoked until all the
tasks are satisfied, after which the requests are refreshed to 1.
In this experiment, the goal is to increase the throughput of the
system which is measured by the number of successful
accomplishment per 5000 steps. The results are averaged over
five trials and demonstrated in Fig. 4. Also, the best trial
among the five trials for Cooperative HRL agent and Selfish
Multiagent HRL agent are selected and provided in Fig. 5.

Fig. 4 and Fig. 5 show that Cooperative HRL has a good
performance and the algorithm has found the best order of
setting the sensors and informing the center. Indeed, the
throughput of system approximately converges to 1250
successful accomplishment in 5000 steps which is equivalent
to switching on the minimum number of the sensors by each
agent (as was discussed it can be achieved by three sensors)
plus one action of informing the center, i.e. = 1250.
Actually, we used the above-mentioned request signal
generation mechanism to be able to calculate the throughput of

the system. The abrupt raise or fall of learning performance in
selfish multi-agent HRL might be because of lack of
coordination that can happen when policy of one of the agents
changes. The poor performance of centralized multi-agent Q-
learning is because of the large number of learning values
which decrease speed of learning. Fig. 6 shows that learning
can be improved for centralized multi-agent Q-learning
algorithm with larger values of , however, learning still is not
mature with the specified number of steps.

Finally, we performed an experiment with random request

signal generator and the results for Cooperative HRL
algorithm is depicted in Fig. 7.

Fig. 5. Configuration of sensors and targets in _ plane.

Fig. 4. Comparison between throughput of different algorithms

Fig. 6. Throughput of the system for centralized Q-learning with

larger .

MACHINE LEARNING COURSE / Fall 2008

5

V. CONCLUSION
In this study, a dynamic coverage control problem with

autonomous agents and a set of sensors was described. A
hierarchical framework for the process of learning in agents
was presented, and two hierarchal multiagent reinforcement
learning algorithms were employed to solve the problem. We
compared the results of hierarchical algorithms (Cooperative
HRL and Selfish Multiagent HRL) with multiagent classical
RL algorithms for flat cases including centralized and
decentralized Q-learning. The hierarchical algorithms were
much superior to the flat algorithms in both learning speed and
throughput of the system. Also, the hierarchical approach
could help in significant decrease of state space and learning
variables.

REFERENCES
[1] M. Ghavamzadeh, S. Mahadevan, and R. Makar, “Hierarchical multi-

agent reinforcement leaning,” Auton. Agents Multi-Agent Syst., vol.
13, no. 2, pp. 197–229, 2006.

[2] R. Makar, S. Mahadevan, and M. Ghavamzadeh, “Hierarchical multi-
agent reinforcement leaning,” in Proc. Fifth International Conference
on Autonomous Agents, pages 246-253, 2001.

[3] T.G. Dietterich, “The MAXQ Method for Hierarchical Reinforcement
Learning,” in Proc. Fifteenth International Conference on Machine
Learning, 1998, pp. 118-126.

[4] T.G. Dietterich, “The MAXQ Method for Hierarchical Reinforcement
Learning,” Journal of Artificial Intelligence Research, vol. 13, 2000, pp.
227-303.

[5] A.G. Barto, and S. Mahadevan, “Recent Advances in Hierarchical
Reinforcement Learning,” In Discrete Event Dynamic Systems: Theory
and Applications, vol. 13, 2003, pp. 41-77.

Fig. 7. Throughput of a Cooperative HRL agent in a random request
signal generation system

MACHINE LEARNING COURSE / Fall 2008

6

I. APPENDICES

A. The Cooperative HRL Algorithm [1]

