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Abstract—This paper studies an optimal control problem of 

maximizing quality of estimation while minimizing control 
energy for a set of noisy mobile sensors. The cost functional is a 
weighted sum of the error covariance throughout the maneuver 
as well as the terminal time, and the control energy throughout 
the maneuver constrained to sensors motion dynamics and 
equations of a linear time varying filter for the error covariance. 
This problem is transformed to a two-point boundary value 
problem using Pontryagin maximum principle. Boundary 
conditions with free and fixed terminal sensor states are 
considered and a mathematical continuation approach is 
presented to come up with each of the cases. Finally, numerical 
simulations are provided to investigate the applicability of the 
proposed approaches to solve the problem for different 
conditions and also illustrate some interesting aspects of the 
problem like the effect of cooperation. 

 
Index Terms—Cooperative Control, Kalman Filtering, State 

Estimation, mobile sensors. 
 

I. INTRODUCTION 
ULTI sensory estimation of a process using a set of 
mobile sensors can be considered as a problem of 

formation control which is  one of the main categories of 
cooperative control for multi-agent systems. In fact, 
cooperative estimation can help to increase the quality of 
estimation by providing more measurements as well as more 
spatial perceptions, and also to improve robustness of the 
whole system to failure of some of the individuals. Hence, it is 
declared that cooperative estimation is more accurate and 
more fault tolerant. In this respect, moving sensors are more 
advantageous because of a new degree of freedom they make 
for the optimal estimation problem. This degree of freedom 
which is the sensor trajectory can be employed to enhance the 
accuracy of estimation by making the sensor get close to the 
process and consequently unveiling some of the uncertainties 
like measuring noises. However, the required energy for 
moving the sensors during the maneuver is a crucial factor that 
must not be ignored. The problem of simultaneous 
maximization of the estimation and minimization of the 
control effort for a set of mobile sensors is the problem we are 
to address in this study. Indeed, this is the optimal control 
problem which is proposed in [1], and the present work 
provides a deeper investigation of the problem as well as 
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offering suggestions for new problem conditions and scenarios 
like fixed final sensor states accompanied by more detailed 
and complex simulations. 

In this paper, we use the concept of central (centralized) 
Kalman filtering which is addressed in many applications of 
multi-agent estimation to find the optimality equations. Multi-
agent Kalman filtering is proposed in literature in a variety of 
forms. In [2], the authors introduce combined sensing and 
control with decentralized Kalman filtering. Distributed 
Kalman filtering is derived in [3] by transforming the central 
Kalman filter to a set of micro Kalman filters ( KF) and using 
consensus filters. In [4], a novel multi-agent Kalman filter is 
described in a decentralized approach that makes use of 
estimations of other sensors rather than their measurements. In 
[5], moving sensors (UAVs) are considered and a low-pass 
filter is suggested to update the sensors’ estimations. 
Moreover a fault detection mechanism is exploited to identify 
the best estimations. In [6], a Kalman filtering scheme is 
employed in a fire detection mission for estimation of alarm 
locations and a Bayesian approach is manifested to obtain the 
probability of potential alarms.     

In Section II, the optimal control problem we are addressing 
in this study is described and formulated. Section III is 
dedicated to two-point boundary value problems with a quick 
review of numerical methods to solve them. The proposed 
approaches to solve the optimal control problem of section II 
are also explained in this section. In section IV, simulation 
studies for different conditions are summarized, and finally, 
conclusions are drawn in section V. 

II. PROBLEM DESCRIPTION AND FORMALISM 

A. Problem Description 
The classical Kalman filter gives an optimal linear 

estimation of the process. However, minimizing the estimation 
error is not the only concern of designers in many applications 
of cooperative control. For example in the case of mobile 
sensors, there are additional degrees of freedom to make 
optimal trajectories towards the targets for the purpose of 
estimation accuracy, energy efficiency, meeting the specified 
waypoints, etc. So, there should be a tradeoff between 
different goals of the mission to perform the whole project 
perfectly. While estimation error can be diminished by moving 
through “sweet spots” of the sensors [7], [8], control effort and 
spatial constraints of the mission and environment are 
important factors that must not be ignored. Moreover, the 
designers might be interested to investigate importance of 
each of the factors, and this is the time when optimal control 
strategies can be employed to make the best decisions. 
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In [1], an optimal control problem is proposed to come up 
with the challenges described above. This problem is to 
minimize a cost functional which is a weighted sum of 
estimation error and control energy subject to equations of 
sensors motion and error covariance matrix of a linear filter. In 
the following part we provide the mathematical formulation 
for this problem according to [1]. 

B. Formalism  
Consider the linear process characterized by linear time 

varying equations: 
  ̇( ) =  ( ) ( ) +  ( ) ( ),  ( ) =  ( ) ( ) (1) 

 
where  ( ) ∈ ℝ  is the state of the process,  ( ) ∈ ℝ  is a 
white Gaussian noise with zero mean and covariance given by  [ ( )  ( −  )] =  ( ) ( ), where  ( ) is a symmetric 
positive definite matrix for all  , and  ( ) ∈ ℝ  is the output 
to be measured by the sensors.  ( ) is  ×  ,   ( ) is  ×  , 
and  ( ) is  ×  , where   is the number of state variables 
for process,   is the dimension of the process noise, and   is 
the number outputs for the process or the number of 
measurements by all the sensors.  (  ) is a Gaussian random 
variable and independent of the process noise. 

Measurements are described by the following equation: 
  ( ) =  ( ) +  ( ) =  ( ) ( ) +  ( )  (2) 

 
where  ( ) ∈ ℝ  is Gaussian white noise with zero mean and 
covariance given by  ( ) ( ), where  ( ) is a symmetric 
positive definite matrix for all  . In this study, we assume that   is a function of the distance between the sensor and the 
process. Hence, in the rest of this paper, we use   (  ) to 
show that   is dependent on the sensor location (the process 
location is fixed). 

The linear time varying filter is given by 
  ̇ ( ) =  ( )  +  ( ) ( )   (3) 
 
where   ( ) is a  ×   matrix and  ( ) is a  ×   matrix. By 
defining  ( ) =  ( ) −   ( ), the error dynamics will be 
  ̇( ) =   ( ) −  ( ) −  ( ) ( )  ( )                           + ( ) ( ) +  ( ) ( ) −  ( ) ( )  (4) 
 
From (4) it can be concluded that  ( ) should be equal to  ( ) −  ( ) ( ) to have an unbiased estimator. Finally, by 
defining the error covariance matrix, Σ( ) =  [ ( )  ( )], the 
following equation can be derived: 
 Σ̇( ) =   ( ) −  ( ) ( ) Σ( ) + Σ( )  ( ) −  ( ) ( )     + ( ) ( )  ( ) +  ( ) ( )  ( ),Σ(  ) = Σ    (5) 
 

Now, we are going through the equations for mobile 
sensors. Each sensor satisfies the following dynamics: 
  ̇ , =   ,   , +   ,   ,   , (  ) =   ,    (6) 
  = 1, … , , where   is the number of sensors,   , ∈ ℝ  is the 

state of sensor   composed of sensor locations,   ( ) ∈ ℝ  and 
velocities,   ( ) ∈ ℝ .   ∈ ℝ  is the control input for sensor   . By aggregating the sensors’ dynamics in combined vectors 
and matrices according to the following formulations:   ( ) =   , ( ),  , ( ), … ,   , ( ) ,  ( ) =    ( ),  ( ), … ,  ( ) ,   =        , ( ),  , ( ), … ,  , ( ) ,   =        , ( ),  , ( ), … ,  , ( ) , one can obtain the 
compact form described in (7) 
  ̇ =     +     ,   (  ) =     (7) 
 

Now the optimal control problem for cooperative estimation 
and sensor motion planning which is minimization of 
weighted sum of the error covariance and control energy 
acting on the sensors is formulated: 
  =         Σ     + ∫    ‖  ‖ +   [ Σ( )]       (8) 
 
where  ≥ 0 is the control weighting parameter,    denotes 
the trace of a square matrix,        is a  ×   symmetric 
positive definite weighting matrix for the error covariance at 
the final time, and   is a  ×   symmetric positive semi-
definite weighting matrix for the covariance error during the 
process.  ( ) and   ( ) are variables that should be found by 
solving the above-mentioned optimal control problem subject 
to (5) and (7) which are dynamics of the error covariance and 
sensors’ motion, respectively. 

The Pontryagin maximum principle can be used to come up 
with this problem. We firstly form the Hamiltonian in (9) 
using  ( ) as a  ×   generalized momentum matrix dual to Σ( ) and  ( ) ∈ ℝ  as a generalized momentum vector dual to   , and then two of the optimality conditions are derived in 
(10) by solving the differential equations:     ( )⁄ = 0 and     ( )⁄ = 0. Finally, the two remaining optimality 
conditions are obtained by in (11) and (12). For more detailed 
calculations one might see [1]. 
  =    Σ̇( )Λ  +  ( ).  ̇ ( ) +    ‖  ‖ +   [ Σ( )]  (9) 
  ∗( ) = Σ( )  ( )      ( ) ,  ∗( ) = −      ( ) ∗( )  (10) 
 Λ̇∗( ) = −    Σ⁄ = −  ( ) −  ∗( ) ( )   ∗( ) −                                               ∗( )  ( ) −  ∗( ) ( ) −   (11) 
 λ̇∗( ) = −    x ⁄ =               −    ∗( ) +     ⨂   ( )    ( )  ∗      ( )      ∗  (12) 
 
The symbol ⨂ is the Kronecker product.   ( ), where   is  ×  , is a row vector obtained by taking the rows of A and 
stacking them horizontally to obtain 1 ×    row matrix and  ( ) =   [    Λ ]. 

For free terminal sensor locations and velocities, the 
boundary conditions are shown in (13) while for fixed 
terminal sensor locations, the boundary equations change to 
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those in (14), and finally, in the case of fixed sensor locations 
and velocities the conditions are described in (15). 
 Σ(  ) = Σ    (  ) =      ∗    = 0  ∗    =  (  ) 

(13) 

 Σ(  ) = Σ    (  ) =           =       ∗    = 0  ∗    =  (  ) 

(14) 

 Σ(  ) = Σ    (  ) =           =      ∗    =  (  ) 

(15) 

 
where    is the vector of all sensor locations and    ∗ is the 
generalized momentum vector associated with the vector of all 
sensor velocities. Note that the solution to the proposed 
optimal control problem with free terminal sensor locations 
and velocities for  = ∞ (i.e., sensors are immobile) and  = 0 leads to the classical Kalman filter [1]. 

III. TWO POINT BOUNDARY VALUE PROBLEMS AND 
NUMERICAL APPROACHES 

A two-point boundary value problem is a problem (TPBVP) 
in which there are constraints on both initial and terminal 
values for a set of differential equations. A general TPBVP is 
shown is shown in (16) and (17). 

  ̇( ) =  ( ,  );       ≤  ≤     (16) 
    ( ), ( ) = 0  (17) 
 

where (16) describes the dynamics of the system and (17) 
defines the boundary conditions on the system. TPBVPs from 
optimal control problems have usually separated conditions in 
the form of     ( ) = 0 and     ( ) = 0. In this section, a 
short review of some existing methods for TPBVPs is 
presented and then our approach to solve the optimal control 
problem introduced in section II is elaborated for different 
terminal conditions. 

A. Methods to Solve Two Point Boundary Value Problems 
There exist a number of numerical methods to solve 

TPBVPs including shooting, collocation and finite difference 
methods [11], [12], [13]. Among the shooting methods, 
Simple Shooting Method (SSM), and Multiple Shooting 
Method (MSM) are the most popular and used in many 
applications. In SSM, the TPBVP is converted to an initial 
value problem, and the initial values of the variables are varied 
to fulfill the desired final conditions. However, SSM is not 
very efficient in the problems which are sensitive to initial 
conditions. MSM has been proposed to come up with this 

problem. In MSM, variables are set at initial time, and then the 
differential equations are integrated until the distance from a 
corresponding point on a pre-defined reference path exceeds a 
tolerance value. After that the integration starts from the 
corresponding point on the reference path and the previous 
process repeats until the final time is reached. One of the 
disadvantages of MSM is the large number of parameters 
which are to be updated in each iteration which slows down 
the whole process. 

Collocation Method (CM) and Finite Difference Method 
(FDM) are based on the transformation of the TPBVP to linear 
or nonlinear algebraic equations and then using suitable 
methods to solve these equations. In fact, CM and FDM are 
much more complex to set up than the shooting methods. 

  In this study, MATLAB®’s bvp4c.m is used to solve 
TPBVPs [9], [10]. The collocation method of this program 
leads to a system of nonlinear algebraic equations that is 
solved by a variant of Newton’s method. This program 
requires an initial guess for time parameterized state variables 
which is a real challenge for the posed optimal control 
problem described in section II because of the nonlinearity of 
the equations and also abundance of the states and equations. 
The approach to come up with this challenge is the use of 
mathematical continuation approach which is elaborated for 
different conditions in the following part.  

Another problem with bvp4c is that it approximate the 
partial derivatives (e.g. in calculation of Jacobian Matrix) with 
finite differences. The program is more robust and efficient 
when it is provided by analytical derivatives [14], however, it 
is inconvenient for the user to make analytical derivatives 
when the number of state variable increases. To handle this 
problem, one might use bvp4cAD.m [15], which employs the 
MAD [16] package of automatic (algorithmic) differentiation 
(AD) designed for MATLAB® to have accurate derivative 
values.  AD is based on systematic application of the chain 
rule of differentiation to the floating point evaluation of a 
function and its derivatives. In this approach, there are no 
discretization and cancellation errors, hence the results are 
accurate and without roundoff [14]. 

B. The Proposed Approach to Solve the Optimal Control 
Problem 
In [1], the mathematical continuation approach was 

proposed to solve the problem for free terminal sensor 
locations and velocities. As it was declared in section II, the 
optimal control problem in (8) leads to classical Kalman filter 
for the case of  = ∞ and  = 0. So, by defining the cost 
functional in (18), and setting  = 0 the solution will be the 
classical Kalman filter which is easily obtained since it is an 
initial boundary problem. Consequently, the classical Kalman 
solution can be used as an initial guess for a higher    and 
gradually, by using continuation approach   increases to 1 and 
the original problem is solved. 

                  =         Σ                         +    ∫    ‖  ‖ +   [ Σ( )]        (18) 
 
For fixed terminal sensor locations or velocities we propose 

an approach which can be used to come up with scalability of 
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the original problem. Consider a problem in which a moving 
object with the dynamics described in (6) wants to go from 
one point to another point while satisfying specified initial and 
terminal velocities with the minimum control effort. This is a 
classical problem of minimum energy (fuel) problem which 
can be easily solved by analytical calculations or numerical 
methods because there are a few unknown states and co-states 
in the optimality equations. Also in this problem, according to 
linear equations in (6), we face a LQR problem which is easily 
tractable in optimal control literature. Now, consider the cost 
functional in (19). When  = 0, the solution is equivalent to 
solution of the classical minimum energy problem for each of 
the moving sensors. So, by considering this solution as an 
initial guess and performing the mathematical continuation 
approach, the original optimal control problem is solved. 

                   =   .        Σ                          +∫    ‖  ‖ +   .  [ Σ( )]       (19) 
 

IV. SIMULATION STUDIES 
Manipulating the equations and relations described in 

section II is not straightforward for simulation of the problems 
with multiple coupled and correlated processes. In this section, 
we want to come up with the problems of multiple sensors and 
processes in which the optimality conditions constitute more 
than twenty variables. So, for the sake of simplicity, a set of   
decoupled and uncorrelated processes are considered, each 
satisfying a one-dimensional linear time invariant state 
equation. In fact, this is a common assumption in many of 
cooperative control missions when the processes are 
distributed in different areas, and the goal is an accurate 
sensing and estimation of the state variable for each process 
(e.g. fire detection mission). The problems which are studied 
in this section are defined according the formalism provided in 
the following paragraph. 

In the case of decouple and uncorrelated processes we have  =     (  , … ,  ) and  =     (  , … ,  ) a diagonal  ×   matrix (it is assumed that  =  ).   is chosen to be the   ×   row block matrix made up of concatenating   identity 
matrices of dimension  ×   row-wise (so  =   ),   is a 
diagonal matrix equal to     (  , … ,  ), and Σ is a diagonal 
matrix of the form Σ =     (Σ , … , Σ ). Assuming 
uncorrelated measurements, the covariance matrix  (  ) is a   ×    block diagonal matrix of the form  (  ) =    (  (  ), … ,  (  )), where each   (  ) ( = 1, … , ) is a  ×   diagonal matrix:   (  ) =     (   (  ), … ,   (  )) in 
which    is the position of sensor   and    (  ) is a function of 
the distance between sensor   and process  . In the 
experiments which are simulated in this section    (  ) is 
defined as follows:    (  ) =      −     +   . 

For the sensors we follow the formalism explained in 
section II. In all the simulations of this section, the following 
matrices are employed in sensor motion dynamics: 

 

  , =  0 00 0 1 00 10 00 0 0 00 0 ,  , =  0 00 01 00 1 ,  = 1, … ,  

 
Finally, it is assumed that  (  ) and   are  ×   diagonal 

matrices of the form      =     (  , … ,  ) and  =    (  , … ,  ). 
In the rest of this section, we firstly simulate a simple 

example to have better understanding of the subject and 
investigate some interesting aspects of the problem like effect 
of mobility and cooperation. Then three more complex 
problems with different terminal conditions are studied. 

A. Detailed Analysis of a Simple Example 
The problem we are to study in this part is composed of a 

one dimensional process and a single sensor with free terminal 
states optimality conditions. The characteristics of the process 
and the sensor according to the formalism described in section 
II is provided in Table I. Simulation results obtained by the 
mathematical continuation approach introduced in section III 
are provided in Fig. 1, Fig. 2. In this experiment   is set to 0 
where we get the classical Kalman filter and gradually, it is 
increased to 1 with increments of  = 0.05 in which the 
solution for the original optimal control problem is achieved. 

 
TABLE I 

PARAMETERS FOR SIMULATION OF SIMPLE EXAMPLE WITH 1 SENSOR                   
1 1 -0.5 1 1 1 0.04   (0)   (0)   (0) Σ (0)          

(10, 10) (0,-2) (0,0) 200 5 3 10 
 

 
 

Fig. 1 shows the trajectory of motion for the sensor, and one 
can see that the sensor reaches the process location in the 
specified time. Although it seems intuitive for a sensor to track 
the process location in a system of a single process to enhance 
estimation accuracy, however, it is not the outcome of all 
cases, i.e., when tracking the target is so energy-consuming, 
the sensor might accept estimation error for the sake of saving 
energy. Fig. 2a illustrates the control signal in the process of 
mathematical continuation approach for two cases, one with  = .05 and one with  = 1. As it is shown in the figure, 
control cost increases as    (which is disproportionate to 

 
Fig. 1. Sensor motion planning for an example of 1 sensor and 1 
process. 
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control weighting parameter) grows, and consequently, the 
chance for approaching the target and improving the 
estimation increases. Fig. 3 compares estimation accuracy 
between the immobile ( = 0 or classic Kalman filtering) and 
the mobile sensor. To have a fair comparison the estimation is 
performed for 50 times and the results are averaged. In 
addition, the error bar for the interval of ±3  is depicted in 
this figure which determines the interval that the estimation is 
placed in it with probability of about 99% (for Gaussian 
noise). It can be observed that the mobile sensor outperforms 
the immobile one in accuracy of estimation as the time goes 
on.  

 

 
 

Investigating the Effect of Cooperation 
To demonstrate the effect of cooperation in estimation, we 

repeat the experiment described above with two mobile 
sensors. In fact, another sensor completely the same as the 
first one is positioned in the  −   plane with equal initial 
distance from process location. Simulation results for this 
experiment are provided in Fig. 4 and Fig. 5. It can be 
observed from Fig. 5 that cooperative estimation has better 
performance than single sensor estimation. 

 

 
B. Free Terminal States 
In this part a more complex problem with two sensors and 

three targets is studied considering free terminal states. The 
parameters for simulating this problem are shown in Table II. 
Mathematical continuation approach for free terminal states 
with  = 0.05 was employed to solve this problem and the 
results are depicted in Fig. 6. 

 
TABLE II 

PARAMETERS FOR SIMULATION OF SIMPLE EXAMPLE WITH 1 SENSOR 
sensors #  (0)  (0)     Optimal Control Problem 

1 (10, 10) (0,-1) 5 3   0.04 
2 (-12, 15) (2,1) 5 3    10 

process #  (0)       

 1 (0,0) 1 0 1 
2 (10,0) 1 0 1 
3 (0,10) 1 0 1 

 

C. Fixed Terminal States 
To evaluate the performance of our proposed algorithm to 

solve the problems with fixed terminal states (sensor locations 
or velocities), an example of two sensors and three processes 
is considered. The statistics for this problem is provided in 
Table IV. Two experiments are performed on this problem 
with two different terminal conditions. For the first experiment 
both the terminal locations and velocities are fixed while in 
the latter terminal sensors velocities are free. The results of 
simulation for this problem using the mathematical 
continuation approach are summarized in Fig. 7 and Fig. 8. It 

 
Fig. 5. Comparison between multiple sensors estimation and single sensor 
estimation 

 
Fig. 4. Sensor motion planning for two identical sensors 

Fig. 3. Comparison between mobile and immobile sensor estimation 

 
Fig. 2. Control Inputs during the mathematical continuation process. 
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can be observed that in both of the experiments, the sensors 
try to approach the processes to have more accurate 
estimation. Comparing these two figures, it is notable that the 
control energy for the case with fixed final velocities is more 
than the second case because of the extra constraints imposed 
on the sensors. Likewise, the sensors with free terminal 
velocities are freer to go near the targets and consequently 
have better estimation. 
 

 
 

TABLE III 
PARAMETERS FOR SIMULATION OF SIMPLE EXAMPLE WITH 1 SENSOR 

sensors 
#  (0)  (0)  (  )  (  )     

Optimal 
Control 
Problem 

1 (10, 10) (0,-1) -10,-15) (-2,-1) 5 3   0.04 
2 (-12, 15) (2,1) (10,-8) (1,-1) 5 3    10 

process #  (0)   Σ(0)     

 1 (0,0) 1 200 0.01 0 
2 (10,0) 1 200 0.01 0 
3 (0,10) 1 200 0.01 0 

 

I. CONCLUSION 
An optimal control problem for simultaneous enhancement 

of estimation and control effort of a set of mobile sensors with 
linear motion dynamics was developed in this study. A 
method based on mathematical continuation approach was 
proposed for the case of fixed terminal sensor states (location 
or velocity), and the applicability of that was shown through a 
number of simulation studies. In addition, the previously 
studied case of free terminal sensor states was elaborated and 
analyzed with more details and discussions on more complex 
test cases. 

For future work, a similar optimal control problem can be 
described for optimal cooperative estimation and planning in a 
decentralized approach where the constraining equations are 
individual sensor motion dynamics and the equations of error 

covariance for a local set of sensors in a distributed or 
decentralized form. Also, the problem can be retreated for 
nonlinear sensor motion dynamics or constrained state 
variables which are the common case of real problems (e.g., 
Dubins car model with maximum turning rate). Finally, the 
optimality conditions and settings provided in the presented 
work are not consistent when the estimated variable is the 
location of the process because of the fact that the covariance 
matrix   which is defined to be deterministic becomes a 
stochastic estimation. Hence, another suggestion is to rederive 
the relations for the case when   is a function estimated 
variables. 

 

 
 

 

 
 

 
 

Fig. 7. Cooperative control and estimation with fixed terminal sensor 
locations and free terminal velocities. (a) motion planning, (b) control inputs, 
(c) error covariance, and (d) trace of velocities. 

 
 

 
 

Fig. 6. Cooperative control and estimation with fixed terminal sensor 
locations and velocities. (a) motion planning, (b) control inputs, (c) error 
covariance, and (d) trace of velocities. 

 
 

 
 
Fig. 6. Cooperative control and estimation with free terminal state 
variables. (a) motion planning, (b) control inputs, (c) error covariance, and 
(d) trace of velocities. 
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