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ABSTRACT 
 
 

NASH EQUILIBRIUM SEARCH FOR NONLINEAR GAMES USING 

EVOLUTIONARY ALGORITHMS 

 

Finding Nash Equilibrium (NE) for nonlinear games is a challenging work due to 
existence of local Nash Equilibrium traps. So, devising algorithms that are capable of 
escaping from trapping in local optima and finding global solutions is needed for analysis 
of nonlinear games. Evolutionary Algorithms as the popular stochastic global search 
algorithms can be exploited for this purpose. In this thesis, Nash Equilibrium search 
approaches for nonlinear games are studied through a number of numerical examples and 
practical problems.  
 
Coevolutionary programming, evolutionary iterative Nash Equilibrium search, and 
minimizing objective functions with embedded Nash Equilibria, using evolutionary 
algorithms, are the main methods discussed in this work. Also, local optimization 
algorithms are employed in some of the problems for comparison. 
 
For practical simulations we apply the proposed algorithms to several nonlinear games in 
electricity market models with two to six players. Transmission-constrained electricity 
markets with linear and nonlinear demand functions and unconstrained electricity 
markets with a nonlinear total demand are the main case studies in this work. We adopt 
Invasive Weed Optimization for all the evolutionary computing purposes, and the 
efficiency of our proposed Coevolutionary Invasive Weed Optimization (CIWO) for 
finding global NE is shown in the simulations. Likewise, successful results of the 
proposed Discrete Invasive Weed optimization (DIWO) in NE search for games with 
discrete strategy spaces are provided. 
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CHAPTER I 
 
 

INTRODUCTION 

 

John Nash’s formulation of noncooperative game theory was one of the great 
breakthroughs in the history of social science. Nash Equilibrium (NE) is a solution of a 
game involving two or more players in which no player has incentive to unilaterally 
change her action, so any change in strategies by any of the players lead that player to 
earn less.  
 
In November, 1949, the proceedings of National Academy of Science received a short 
note from Nash which was published the next year [35]. In this assay, Nash gave general 
definition of equilibrium for normal-form games, and he neatly sketched an argument 
using the Kakutani fixed-point theorem to prove that equilibria in randomized strategies 
must exist for any finite normal-form game. Also, in 1951, he presented his outstanding 
article “Noncooperative Games” [36] in which he argued that his noncooperative 
equilibrium concept, together with von Neumann’s normal form gives a complete general 
methodology to analyze all games. Furthermore, he showed the efficiency and 
importance of his proposed equilibrium in a number of interesting examples, illustrating 
problems which have concerned game theorists ever since, including a game with one 
Pareto-inefficient equilibria like Prisoners’ Dilemma.  
 
Historically, the concept of NE was developed before Nash in literature by a number of 
famous scientists. Antoine Augostin Cournot in his brilliant book [37], constructed a 
theory of oligopolistic firms that includes monopolists and perfect competitors as limiting 
extremes (1838). In fact, we may speak of Cournot as the founder of oligopoly theory 
[38]. 
Another prominent work was done by John von Neumann and Oskar Morgenstern who 
introduce the concept of mixed strategy NE for special case of zero-sum games [39].  
Also, Bertrand (1883) to Felner (1949) found specific models of oligopoly which had 
some applied predictions [40], [41]. 
 
Since its development, NE plays an important role in game theory and has been used for 
modeling problems in a variety of areas like economics, biology, engineering, political 
science, computer science, philosophy, etc.  
 
In this thesis we aim to find Nash Equilibrium for nonlinear games. Although rigorous 
mathematical frameworks have been devised to approach games with linear 
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manipulation, however, considerable amount of attention have been dedicated in recent 
years for NE search in the case of nonlinear games. In this respect, the terms of 
evolutionary game theory [34] and Natural selection in biology and life science have 
been employed by economics and engineers to have more insights to the concept of Nash 
Equilibrium. In fact, evolutionary game theory in a computational scheme is the 
application of natured-inspired models of change in generations of populations to game 
theory. 
 
In this study, Evolutionary Algorithms as the popular means of global search are 
exploited to find NE for nonlinear noncooperative games. We try to put all the common 
methods of NE search in evolutionary frameworks and analyze their performance through 
a large number of numerical simulations for finding global NE. The oligopolistic games 
in electricity markets are the practical problems which are studied in this work.  
 
The remainder of thesis is arranged as follows. Chapter II explains methods and 
approaches for NE search in games with two or more players. A numerical example is 
solved with each proposed method to identify the efficiency, advantages and drawbacks 
of the algorithms and also to have a comparison between evolutionary and non-
evolutionary frameworks. 
 
Chapter III provides a large number of practical simulations for different models of 
games in electricity markets. Moreover, performance of the proposed methods in chapter 
II for solving complex games with fairly large number of players is investigated. 
 
Finally, chapter IV delivers the decisive message of my work and clears the perspective 
for future works. 
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CHAPTER II 
 
 

METHODOLOGY 

 

Many techniques have been developed for searching Nash Equilibrium (NE) in game 
theory problems. All the approaches are inspired by NE definition which is maximizing 
the payoff, given other players’ strategies. The simplest method which can be applied to 
two or three player games, is finding the intersection of best response curves (reaction 
curves) by drawing or Algebra. For graphical approach, some geometric techniques have 
been also proposed to come up with more than two player problems [17]. Algebra can 
improve the method to solve games with several players, but it can be applied to 
problems with simple mathematical manipulations. This algorithm is commonly used in 
Cournot or Bertrand models of electricity markets with linear demand functions, using 
the first-order condition for maximizing each player’s payoff [1], [18], [19]. 
 
Iterative NE search in which players repeatedly maximize their payoff by turn is another 
method that is applied to more complex problems. The profit maximization problem 
which is embedded in this method can be solved by local or global optimization 
algorithms. In literature, local search is more popular and have been employed in [3], 
[28] and [26], however in [9], a GA-based algorithm is also presented for profit 
maximization. 
 
In recent years, with development of Soft Computing [23], and increasing growth of 
Biomimicry [24], and Bioinspired Computing in a variety of applications, there has been 
a considerable attention to evolutionary game theory and computational intelligence for 
game learning and simulation of electricity markets [3], [7]-[9], [13], [14], [22], [32], 
[33]. Coevolutionary programming is the most popular technique for this purpose. In [3], 
a novel Hybrid Coevolutionary is applied to solve constrained-transmission electricity 
markets, and in [8], a GA-based coevolutionary algorithm is exploited to simulate a 
simple electricity pool. Besides coevolutionary algorithms, learning methods in agent-
based approach have also been used to study imperfect competition in electricity markets 
[5], [20], [21]. In fact, these days, agent-based economics is a rigorous opponent of game 
theory to simulate electricity markets. 
 
Another approach for searching NE is characterization of NEs in terms of minima of a 
function and then minimizing this objective function. This method was firstly employed 
in finding mixed strategy NEs [13], [14], but recently a similar technique was introduced 
in [7] to identify pure NE in games with a large number of players. It seems that more in
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investigations are needed to understand the efficiency of this model.    
 
Section 1, provides a quick review for the concept of Nash Equilibrium. In section 2, 
Coevolutionary Programming to find NE is explained, while Iterative NE Search 
algorithms are described in section 3. Finally, section 4 summarizes methods of modeling 
Nash Equilibrium as a minimum of a function. Note that for each section a numerical 
example is simulated and the results are interpreted. 
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1. Nash Equilibrium 

A general multi-player game consists of an index set  = {1, 2, 3, … , N} called player’s 
set and an index set  = {1, 2, 3, … , K} as the stages of the game, showing the allowable 
number of moves for each player. In each stage, players take strategies from a set of 
strategy spaces  = {   }, and receive a payoff of   (  ,    ), where   ∈    is the pure 
strategy for player  , given pure strategy set of others    = {  , … ,         , … ,   } ∈   . Pure strategy Nash Equilibrium (NE) is a point where no player can obtain a higher 
profit by unilateral movement. The satisfying NE condition for the combined strategy {  ∗,    ∗} is characterized in (2.1). 
 ∀ , ∀  ∈   ,              ∗,    ∗ ≥   (  ,    ∗) (2.1) 
 
As we will use the term local NE in this dissertation, here a definition of that from [3] is 
also provided. 
 ∃ > 0    ℎ  ℎ   ∀ , ∀  ∈   ,    ∗ ,                  ∗,    ∗ ≥   (  ,    ∗) (2.2) 
 
Where   ,      = {          −     <  } 
 
 
2. Coevolutionary Programming 

In [10], coevlolutioanry algorithm (CEA) is defined as “an evolutionary algorithm that 
employs a subjective internal measure for fitness assessment.” The term subjective 
internal measure means that fitness for the individuals are measured based on their 
interaction with each other and this fitness value influences their evolution in some way. 
This is a general definition for coevolutionary algorithm which most the coevolutionary 
computation researchers agree, however there are controversy on some topics like what 
precisely is the nature of interaction? Should the interacting individual be in different 
populations? Do they have to treat concurrently? [10] The answer to these questions is 
beyond the scope of this survey, but in this thesis, we focus on multi-population models 
in which the fitness for individuals is measured by their interaction with individuals in 
other populations. In the following two parts we define Cooperative and Competitive 
Coevolutionary Algorithms and present coevolutionary frameworks to find Nash 
Equilibrium for game theory problems. 
 

A. Cooperative Coevolutionary Algorithm 
 
In Cooperative CEA, each population represents a piece of a larger problem and the 
populations evolve their own pieces in interaction with each other to solve the larger 
problem. A general cooperative coevolutionary framework for is explained in Algorithm 
1. 
 



 

 6 

 
For evaluating part, each individual is combined with its collaborators from other 
populations to form a complete solution and the objective function is evaluated. 
Terminating criteria can be satisfied by falling short of the acceptable tolerance for 
changes in strategies or exceeding the maximum number of iterations. In evolutionary 
process, any evolutionary algorithm (EA) can be exploited, like Genetic Algorithm (GA), 
Particle Swarm Optimization (PSO), Mimetic Algorithm (MA), Simulated Annealing 
(SA). We employ Invasive Weed Optimization (IWO), a novel EA proposed by 
Mehrabian and Lucas [2], for all the evolutionary computation purposes throughout this 
dissertation (See Appendix A). 
 
To put NE search algorithms in the framework represented by Algorithm 1, each player is 
represented by a population of strategies. The fitness of each strategy is evaluated by 
selecting the collaborating players from other populations and payoff calculation for that 
strategy. 
Selecting the collaborators is very important in coevolutionary programming to have the 
best performance and find the real solutions. In [10], a number of attributes for this 
purpose are named: sample size, selective pressure and credit assignment. Sample size 
determines the number of collaborators, while selective pressure is the bias we impose on 
the selection procedure, and credit assignment deals with the fact how to assign one 
fitness value to each individual from the results of multiple objective function evaluation.  
 
In our proposed coevolutionary programming, for the purpose of NE finding, we set the 
sample size for each player to 1, i.e. each player takes one collaborator and for our 
selective pressure we consider two cases: 1) collaborators are selected at random and 2) 
the best strategies from the last evaluation are taken as the collaborators.  
The former was studied in [3] and [8], while the latter was applied in part of the proposed 
Hybrid Coevolutionary Algorithm with GA and Hill Climbing in [3] for the goal of NE 
search. In this section we have a comparison between these two cases to find NE for a 
numerical example of a nonlinear static game. This benchmark will be studied for 
evaluation of all the proposed methods in this chapter. 
 
 
 

Algorithm 1. General framework for Cooperative CEA 
 
1. For population       , all populations 

1.1. Initialize population    
2. For population       , all populations 

2.1. Evaluate population    with collaborators 
3. t:=0 
4. do 

4.1. For population       , all populations 
4.1.1. Evolutionary Process to make the next generation 
4.1.2. Evaluate next generation with collaborators 

4.2. t:= t+1 
5. Repeat 4 until terminating criteria is met 
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a. Numerical Example 

 
This is a nonlinear static game with local NE traps [3], which is also analyzed in [3] and 
[9], and we can consider it as a good benchmark for nonlinear games. The profit function 
for this game is characterized in (2.3), and the global best responses and the local best 
responses for this game are illustrated in Fig. 2.1. 
   (  ,  ) = 21 +   sin(    ) +      sin(    ) 
 (2.3)   (  ,  ) = 21 +   sin(    ) +      sin(    ) 
 

 
 
We use IWO for evolutionary process and apply the proposed coevolutionary framework, 
explained in Algorithm 1 with the both cases described above. The coevolution process 
for the both cases is present in Fig. 2.2.  

 
 

Fig. 2.1. Local and global best responses for the numerical example game 
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It is shown that the coevolutionary approach with random collaborators fail to find the 
global NE while for the second case the strategies quickly converge to the global NE. 
Note that the both cases have the same number of fitness evaluation and are the same in 
computational complexity, but the selection pressure we adopt for the second case 
improves the algorithm. Moreover, for the purpose of comparison with the previously 
proposed coevolutionary algorithm in [3], we can say that our algorithm is better than 
simple coevolutionary genetic algorithm in finding the global Nash Equilibrium and also 
outperforms the hybrid coevolutionary genetic algorithm in number of evaluations and 
computational complexity. 
 

B. Competitive Coevolutionary Algorithm 
 
In Competitive Coevolution, fitness is evaluated based on direct competition among 
individuals selected from evolving populations. Three models have been proposed in [11] 
and [12] for competitive coevolution: 1) Fitness Sharing, 2) Shared Sampling and 3) Hall 
of Fame. In this study we use Fitness Sharing which is more well-known than the other 
two methods. In Fitness Sharing, each individual in the population plays with all 
individuals in other populations (i.e. its payoff is compared with others), and then the 
individuals in the population is scored according to (2.4).  
   = ∑     ∈  (2.4) 

 
Where   is the set of individuals defeated by individual  , and    is the number of 
individuals in the same population as   that are victorious over individual  . Although 
Fitness Sharing is the core of our proposed algorithm, but here, we present a modified 
and novel framework for competitive coevolution to find Nash Equilibrium in game 
theory problems. This framework is summarized in Algorithm 2. 
 

  
(a)                                    (b) 

 
Fig. 2.2. a) Cooperative CIWO with random collaborators  

b) Cooperative CIWO with best collaborators. 
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Like previous section, each player is represented by a population of strategies, and also 
the best individuals in the last evaluation are considered as collaborating players, since 
this selection pressure caused excellent results in the previous section.  
 

a. Numerical Example 
 
Performance of our proposed Competitve CES is assessed by solving the nonlinear game 
described in section II.2.A.a. We use IWO as the evolutionary algorithm, and the 
coevolution process to find NE for this problem is illustrated in Fig. 2.3.  

 
 
We can see that Competitive Coevolutionary IWO (CIWO) converges to global NE very 
quickly, and also there are fewer fluctuations compared to Cooperative CIWO in Fig. 
2.2.b. However, the computational complexity is more for Competitive approach because 
of Fitness Sharing process.  
 
 

 
 

Fig. 2.3. Local and global best responses for the numerical example game 

Algorithm 2. The proposed framework for Competitive CEA to solve games 
 
1. For population       , all populations 

1.1. Initialize population    
2. t:=0 
3. do 

3.1. For population       , all populations 
3.1.1. Calculate Payoffs for population    with slected collaborators 
3.1.2. Assign the payoffs for each individual and its collaborators to that 

individual 
3.1.3. Apply Fitness sharing for population    after playing of each 

individual with all the individuals in other populations 
3.1.4. Evolutionary Process to make the next generation 

3.2. t:= t+1 
4. Repeat 3 until terminating criteria is met 
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3. Iterative NE Search 
 
In Iterative NE Search, players perform the profit maximization by turn until no player 
changes its strategy. The performance of this method is dependent on the search 
algorithm adopted. The general framework for this process is summarized in Algorithm 
3. 
 

 
 
Profit maximization problem for each player can be solved by local or global 
optimization algorithms. Using local optimization to find NE for games has been studied 
in [3], [26], [28], while exploiting global optimization was proposed in [9]. In the 
following parts, both two approaches are described. 
 

A. Local Iterative NE Search 
 
In this method local optimization algorithms are used to solve profit maximization 
problem. In [28], a penalty interior point algorithm is recruited, and in [26] modified 
Newton step is used. In all of the simulations in this dissertation, a local optimization 
software “fmincon” in the MATLAB Optimization Toolbox is used, the same as the 
work done in [3]. 
 

a. Numerical Example 
 
We study the performance of this algorithm in solving the numerical example introduced 
in section II.2.A.a. Two cases are considered for simulation: 1) fixed initial points in all 
the iterations for the local optimization algorithm, and 2) adaptive initial points. In the 
latter, the initial points are set to the solution in the last iteration. 
The results of simulation for the both cases are featured in Fig. 2.4.  It is shown that 
Local Iterative NE Search with fixed initial points fails to find the global Ne and get 
stuck at local NE traps. However, the second case is capable of finding NE after a few 
iterations. Although, this simulation shows the superiority of adaptive approach over the 
other one but, it is needed to have more investigations to make a general conclusion.  

Algorithm 3. Framework for Iterative NE Search 
 
1. Initialize each player’s strategy 
2. For each player 

2.1. Fix other player’s strategies and solve profit maximization problem   
3. Repeat 2 until terminating criteria is met 
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B. Global (Evolutionary) Iterative NE Search 
 
This method was proposed in [9], using Genetic Algorithm (GA) for the purpose of 
global optimization. In this part we use Invasive Weed Optimization (IWO) as the 
evolutionary algorithm and study the performance of this method. 
 
 
 

a. Numerical Example 
 
We solve the nonlinear static game explained in section II.2.A.a, using Evolutionary 
iterative NE Search with IWO. The evolutionary process to find NE for this problem is 
depicted in Fig. 2.5.a. We can see the algorithm converges to the global NE very quickly. 

 
In spite of the capability of the method to find NEs, there are some problems with this 
algorithm. Firstly, using global optimization in each iteration and for each player takes a 

  
(a)                                  (b) 

 
Fig. 2.5. a) Local Iterative NE Search with fixed initial points  

b) Local Iterative NE Search with fixed initial points 

  
(a)                                  (b) 

 
Fig. 2.4. a) Local Iterative NE Search with fixed initial points  

b) Local Iterative NE Search with fixed initial points 
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long time in the whole process and makes the algorithm inefficient for simulation of 
games with a large number of players. Furthermore, if the parameters for the evolutionary 
algorithm aren’t appropriately set, then in the case of immature convergence, there will 
be considerable fluctuations in the solutions even at the final steps of iterative search. 
This problem is illustrated in Fig. 2.5.b.  
 
4. Nash Equilibrium as a Minimum of a Function 
 
The idea of characterization of Nash equilibria in terms of minima of a function was 
developed in [7], although a similar approach was previously used in [13] and [14] for 
identifying mixed NEs in games. In this method, an objective function is defined in 
which the minima are the NEs, and then any optimization algorithm can be exploited to 
solve this minimization problem. However, this objective function is driven in an indirect 
process that makes hard for the local optimization algorithms to find the minima, so a 
stochastic optimization algorithm should be used.  
 
One of the advantages of constructing an objective function is that we have a factor to 
assess the efficiency of the calculated solution, by its fitness value in the objective 
function. The other advantage is that we can apply conventional techniques like 
deflection, stretching, repulsion, etc. in optimization for the computation of all NEs [13]-
[15]. 
 
The objective function for each combined strategy   in the strategy space  and payoff 
function   is defined as follows: 
  ( ) = ∑ [      ∈        (  , … ,     ,    ,    , … ,   ) −   ( )] (2.5) 
 
Form the classical definition of Nash Equilibrium, it is easily concluded that the function   is strictly positive, if the combined strategy   is not an equilibrium and equal to zero 
otherwise, so the NEs are the minima of this function. 
As it is evident in (2.5), a maximization problem is embedded in this function, for which 
direct exhaustive search, local or global optimization can be employed. In games with 
discrete and not too large strategy spaces, maximization can be performed by sorting the 
payoffs, but for continuous games, local or global maximization might be useful. 
 

A. Discrete Minimization 
 
In this case, the strategy spaces might be discrete by their nature or can be discretized to 
small grids with arbitrary precision. So, the objective function is easily calculated for 
each strategy by exhaustive search and then an stochastic optimization is employed to 
minimize this function.  
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a. Numerical Example  
 
We evaluate the performance of this method with our proposed discrete optimization 
algorithm, Discrete Invasive Weed Optimization (DIWO) for the nonlinear static game 
presented in section II.2.A.a. A detailed explanation of DIWO is provided in Appendix B. 
For this problem the strategy spaces are discretized with precision of 0.1. The simulation 
results to find NE for this problem is depicted in Fig. 2.6. Fig. 2.6.a shows the strategies 
evolution while Fig. 2.6.b, presents trace of fitness values for the objective function 
through the evolutionary process. We can see that the algorithm is capable of identifying 
the global NE with our determined precision. 

 
 

B. Continuous Minimization 
 
In this case the strategy spaces are continuous and we don’t want to descretize the 
problem, so we are facing with continuous minimization for objective function and 
continuous maximization for profit maximization. For minimization any stochastic 
optimization algorithm can be adopted, and for profit maximization, the same as the 
approaches presented in Iterative NE Search, we can apply local or global optimization 
algorithms. The two following parts explain the procedure. 
 

a. Local Profit Maximization 
 
In this approach a local optimization algorithm is exploited to maximize the payoff. In 
this survey, we use local optimization software “fmincon” in MATLAB Optimization 
Toolbox for the purpose of profit maximization. Then IWO is employed for objective 
function minimization. 
 

b. Global (Evolutionary) Profit Maximization 
 
In this approach, an evolutionary optimization algorithm is exploited to maximize the 
payoff. In this study, for the both cases of profit maximization and objective function 
minimization, we employ IWO. 

  
(a)                                  (b) 

Fig. 2.6. a) Strategies evolution with DIWO  
b) Objective function minimization with DIWO 
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c. Numerical Example 

 
We investigate the efficiency of the two above-mentioned algorithm to find NE for the 
nonlinear game introduced in section 2.A.a. Fig. 2.7 shows the evolutionary process of 
IWO for continuous minimization with local profit maximization, and Fig. 2.8 
demonstrate the evolutionary process  of IWO for continuous minimization with 
evolutionary profit maximization. We can see that the algorithm with local profit 
maximization is trapped at local NE, while the evolutionary approach converges to global 
NE.  

 
 

 
 
It is useful to say that our simulations show that the both methods esp. evolutionary 
maximization impose high computational complexity and take more time than the other 
methods introduced in this chapter. However, the advantages mentioned in first part of 
section II.4 are provided in these methods, and they might be applicable for some special 
purposes.

  
(a)                                  (b) 

Fig. 2.8. a) Strategies evolution with IWO for continuous minimization with evolutionary profit maximization  
b) Objective function minimization with IWO for continuous minimization with evolutioanry profit maximization 

  
(a)                                  (b) 

Fig. 2.7. a) Strategies evolution with IWO for continuous minimization with local profit maximization  
b) Objective function minimization with IWO for continuous minimization with local profit maximization 
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CHAPTER III 
 
 

SIMULATION RESULTS 

 

In this chapter, a number of nonlinear games with two to six players are studied and the 
effectiveness of the proposed methods in the previous chapter is examined to find NE for 
these problems. 
The principal models that are analyzed in this chapter are transmission-constrained 
electricity market with linear demand functions, unconstrained electricity market with a 
total nonlinear demand function, and transmission-constrained electricity market with 
nonlinear demand functions. 
 
Although transmission-constrained electricity markets with linear demand functions have 
linear demand curves, but the transmission constraints can cause individual profit 
functions to have local optima [26]. Actually, reaction curves in this model are 
discontinuous piecewise linear functions that might make local NE traps [3] or even 
disrupt existence of pure strategy equilibrium for the game [3], [4], [29]. Besides the fact 
that transmission-constrained electricity market model is a good mathematical example 
with a complex game structure and local optima, it is an important model for market 
power analysis in the restructured electricity industry [29]-[30]. 
 
In unconstrained electricity markets with total nonlinear demand function, the complexity 
of the game is due to nonlinearity of demand curves and so local approach in NE search 
might fail to find global NE. As there is one demand in this model, a uniform price is 
existed in this market. 
 
Transmission-constrained electricity markets with nonlinear demand functions have the 
both above-mentioned complexities, and so, analysis and interpretation of this market is 
very challenging. In this market, if the constraints occur, locational price differences are 
produced.  
 
This chapter is organized as follows: section 1 is dedicated to transmission-constrained 
electricity markets with linear demand functions. In section 2, unconstrained electricity 
markets with a total nonlinear demand are studied, and also a comparison between the 
proposed methods in chapter 2 is provided in this section. Section 3, consists of problems 
in transmission-constrained electricity markets with nonlinear demand functions, and 
finally, three other nonlinear games involving electricity spot market, electricity pool 
market model and a dynamic nonlinear game are discussed in section 4. 
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1. Transmission Constrained Electricity Markets with Linear Demand Functions 
 
As it was mentioned in the introduction, transmission constrained electricity market is a 
good example of complex game for our purpose of Soft Computing. Shortly, trading in 
electricity markets can be represented by the maximization of total welfare subject to the 
constraints on the system (3.1). 
 max ( ∑          −∑       ) (3.1) 
  . .                 ℎ                        =                 ℎ             

 
When transmission constraints are binding in the imperfectly competitive market, cournot 
behavior will produce locational price differences similar to a competitive market with 
constraints present. This increases the difficulty of computing the profit maximizing 
condition of the strategic players. The profit maximizing function of each strategic player 
has an embedded transmission-constrained welfare maximization problem within its 
major problem. The generation and transmission line constraints are included in the 
welfare maximization subproblem. The profit function maximization of each utility is 
given in (3.2). 
 max      −         max ∑              ,                            (3.2) 
 
Locational prices (  ), are determined by the Lagrange multipliers of the locational 
energy balance equality condition for Kirchoff’s laws in the welfare maximization 
problem which is also the market-clearing problem, here [16], [31]. 

 
A. Two-Bus Transmission Constrained Cournot Model. 

 
The model, we study in this part is a model with a Generator and a Load at each bus and 
transmission limit     , which was introduced in [3] as a qualitatively similar model to 
California model in [29]. This system is depicted in Fig. 3.1. 

 
Two cases are considered for the transmission constraints: 1)     = 80 and 2)     =30. The former was solved in [3], using hybrid coevolutionary programming, but the NE 
obtained for this limit is the same as NE for unconstrained model which is a linear 
problem to solve. The latter is the one when transmission constraints make sense. We 

   ( ) = −.08   + 50        ( ) = −.04   + 30        ( ) = .01   + 10             ( ) = .01   + 10   
 
 

Fig. 3.1.  Two-bus Cournot model 
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adopted Cooperative CIWO to find NE for the both cases. The coevolution processes for 
these two problems are illustrated in Fig. 3.2, and also the simulation results for the case 
of     = 30 are provided in Table 3.1. 

 
Fig. 3.2 shows that our proposed algorithm is able to come up with the nonlinearity of 
transmission constrained market problems in a few steps of coevolution.  
 
Table 3. 1. Cournot Solution for two bus model with 30-MW limit.               (1 to 2)               

103.53 124.42 133.53 94.42 -30 28.64 22.45 
 
 

B. Three-Bus Transmission Constrained Cournot Model (Two Generator and 
Three Load)  

 
In this part, a three node problem which was studied in [5] and [27] is presented. The 
main purpose is to show the performance of our proposed algorithms when there is no 
pure NE. The system is presented in Fig. 3.3. 

 

 
Fig. 3.3 Three-bus cournot model. Generators are in node 1 and node 2. 

  
(b)                                    (b) 

 
Fig. 3.2. a) cooperative CIWO for two bus model with 80-MW limit. b) cooperative CIWO for two bus model 

with 30-MW limit. 



 

 18

When MC1=10, there exists one pure NE at   = 256 and   = 144, however in the case 
of MC1=15 there is no pure NE. We are to know whether our coevolutionary algorithm is 
capable to show nonexistence of pure NE or not. In [3], a coevolutionary algorithm was 
posed which doesn’t converge when there is no pure equilibrium. Although, this feature 
was declared as an advantage of the proposed algorithm, in [5], one of the issues for 
comparison between Agent-Based approach and Game Theory was their behavior in 
absence of NE. In Agent-Based approach, with each run agents converge to a plausible 
equilibrium and by averaging the results a fairly acceptable equilibrium is taken. 
The coevolution process for the both cases (MC1=10 and MC1=15), using Cooprative 
CIWO with the same parameters is depicted in Fig. 3.4. It is shown that the proposed 
coevolutionary algorithm doesn’t converge when no NE exists (MC1=15). But, in Fig. 
3.5, it is illustrated that when        in CIWO is set to an adequate small value, CIWO 
converges to an equilibrium. In fact, our proposed coevolutionary algorithm can fulfill 
the both sides by appropriate tuning of the parameters. 
 

 

 
 
 

 
 

Fig. 3.5. cooperative CIWO with MC1=15 and       = 0.1 

  
(a)                                   (b) 

 
Fig. 3.4. a) cooperative CIWO with MC1=10 and       = 5    b) cooperative CIWO with MC1=15 and       = 5 
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C. Three-Bus Transmission Constrained Cournot Model 

 
This is a more complex model with a pure NE at   = 1106,   = 1046,   = 995 which 
is solved in [3] and [4] with hybrid coevolutionary programming and graphic 
representation, respectively. This three-bus network is depicted in Fig. 3.6. 

 
Here, we use our proposed Cooperative CIWO to find NE in the case of      = 100. 
The coevolution process for Cooperative CIWO is shown in Fig. 3.7. Despite poor 
performance of the proposed genetic coevolutionary algorithm in [3], Fig. 3.7 shows that 
our coevolutionary algorithm converges to the optimal solution after a limited number of 
iterations. 

 
 
 
 
 

 
 

Fig. 3.7. cooperative CIWO for the three-bus model with      = 100 

   ( ) = −.0555   + 108.4096  ,   ( ) = −.0669   + 103.8238  ,   ( ) = −.0637   + 105.6709   

  ( ) = 0.00786   + 1.3606  ,   ( ) = .010526   − 2.07807  ,   ( ) = .006478   + 8.105354   
 

Fig. 3.6. Three-bus cournot model 
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D. Four-Bus Transmission Constrained Cournot Model 
 
The model which is studied in this part is a modified oligopoly simulation of a 
restructured ERCOT market, introduced in [6]. Perfectly competitive, transmission 
unconstrained and transmission constrained cournot model of this network for three 
market players and four demand entities were studied in [6]. Here, we solve the 
transmission constrained cournot model with four market players and four demanders in 
the case of peak period and constraint of 1000 MW imposed on line 4. The ERCOT 
equivalent system is featured in Fig. 3.8, and also the demand and cost data for peak 
condition is provided in Table 3.2. 

 
Table 3. 2. Data for ERCOT System in Peak Period 

  TXU Reliant & CPSB AEP Others 
Total Cost  =      +    

  0.002255 0.00212 0.00573 0.00478   -11.346 -8.751 3.641 -7.226 
Inverse Demand   =  −    

  437.4316 528.3013 418.7048 397.099   0.016399 0.021585 0.05865 0.036837 
 
The coevolution process for this simulation with Cooperative CIWO is depicted in Fig. 
3.9. Also the solutions are summarized in Table 3.3. 
 

 
 

Fig. 3.8. ERCOT equivalent system 
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Table 3. 3. Solutions for ERCOT Model 

 TXU Reliant & CPSB AEP Others 

Supply (MW) 14585 15007 9609 11366 

Demand (MW) 19227 18818 5057 7465 
 
 
2. Unconstrained Electricity Markets with a Total Nonlinear Demand Function 
 

A. Cournot Model with Two Firms 
 
In this section, a problem with two firms and one nonlinear demand curve for the whole 
system is presented. Two cases with two different nonlinear demand curves are studied: 
1) a homographic demand function and 2) an exponential demand curve. 
The inverse demand functions for these two cases are provided in (3.3) and (3.4), 
respectively. The cost functions for the both cases are the same as the cost function for 
the two-bus constrained model in section III.1.A. 
  =           .  (3.3) 
  = 37.99 exp (−.002028  ) (3.4) 
    is total demand for the market, and   is the clearing price of market.  
The global best response functions of these two cases are depicted in Fig. 3.10. As it is 
shown in the figure, NE for homographic demand function is located at [190,190], while 
for the exponential one there is a pure NE at [162,162]. 

 
 

Fig. 3.9. cooperative CIWO for the four-bus model 
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The coevolution process for Cooperative CIWO to solve these nonlinear problems are 
shown in Fig. 3.11. We can see that the proposed coevolutionary algorithm is capable of 
finding NE for the both model. 
 

 
 
 

B. Cournot Model with Three Firms 
 
For a more complex problem, in this section we examine the performance of CIWO to 
find NE for a oligopoly electricity market problem with three firms (players) and one 
total demand. Like the previous section, we consider two different types of demand 
curves. The inverse demand functions for these two cases are listed in (3.5) and (3.6). 
Cost functions for these two models are the same as those in section III.1.C. 

  
(a)                                   (b) 

 
Fig. 3.11. a) Cooperative CIWO coevolution for two-firm model with homographic demand function 

 b) Cooperative CIWO coevolution for two-firm model with exponential demand function 

  
(a)                                   (b) 

 
Fig. 3.10. a) best response functions in two-firm model with homographic demand function 

 b) best response functions in two-firm model with exponential demand function 
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  = 2.366 ∗ 10     .     (3.5) 
  = 176.3 exp (−0.0004631  ) (3.6) 
 
The coevolution process for these two problems, using Cooperative CIWO is depicted in 
Fig. 3.12. It is shown that there is a pure NE for the first problem at [1173 1097 1051], 
and there is one at [1128 1063 1013] for the second problem.  
 

 
 
 

C. Cournot Model with Four Firms 
 
In this section a cournot model with four firms (players) and one total nonlinear function 
is studied. Like previous sections, two different types of demand curves are considered. 
The inverse demand function for these two models are shown in (3.7) and (3.8). The 
former is a power function and the latter is an exponential one. Cost functions are also the 
same as those described in section III.1.D. (ERCOT simulation). 
  = 1.658 ∗ 10      .    (3.7) 
  = 1692 exp (−5.219 ∗ 10    ) (3.8) 
 
The solutions for these two systems are provided in Table 3.4. The coevoltion process for 
the both models with Cooperative CIWO in finding NEs is illustrated in Fig. 3.13. 
 
 
 

  
(a)                                   (b) 

 
Fig. 3.12. a) Cooperative CIWO coevolution for three-firm model for the inverse demand curve in (3) 

 b) Cooperative CIWO coevolution for three-firm model with exponential demand function in (4) 
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Table 3. 4. Solutions for Cournot Model with Four Firms 

Players Firm 1 Firm 2 Firm 3 Firm 4 
Supply for Power demand function 

(MW) 15198 15713 9578 11514 

Supply for Exponential demand 
function (MW) 14835 15294 9590 11422 

 
 

 
 
 

D. Cournot Model with Six Firms 
 
In this section, we study a problem with six firms (players) and one total nonlinear 
demand function. Although, somehow a large number of players exist in this nonlinear 
profit maximization problem and so the complexity of the problem is more than the 
previous ones, this problem can be easily solved by analytic calculation. Actually, the 
main purpose of our survey in this problem is to investigate the performance of the 
proposed methods in chapter II for solving games with large number of players and also 
their ability to come up with local NE traps [3]. 
 
The demand function and Marginal Costs (MC) for this game are listed in Table 3.5. 
 
Table 3. 5. Data for Six-Firm Cournot Model 

Demand function MC1 MC2 MC3 MC4 MC5 MC6  = 8000  20 24 25 22 26 23 

 
 

  
(a)                                   (b) 

 
Fig. 3.13. a) Cooperative CIWO coevolution for four-firm model for the inverse demand curve in (5) 

 b) Cooperative CIWO coevolution for four-firm model with exponential demand function in (6) 
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The analytic solution to this problem is given as follows. Considering the profit function   =   . ( ) −   .   , the first order condition is given by (3.9). 
  =    −   ( ).   (3.9) 
 
For this problem   ( ) =         or   ( ( )) =         and so the first order condition is  =    +           or   = 8000( −   )   ⁄ . Let   =   ∑   , where  = 6 in this 
problem, then the aggregate supply function will be  ( ) = 8000  ( −  )   ⁄ . 
Equating supply and demand function the equilibrium price will be  =  .   − 1⁄ . 
But there is another local equilibrium at  = ∞ or  = 0. i.e. in the case of constrained 
profit maximization problem, we can say that there is a local NE trap in the lower bounds 
of   s. In our simulations for all the methods, lower bounds are set to 20. 
 
So, from the previous paragraph, it is concluded that the global Nash Equilibrium for this 
game is located at [81.6138   40.7843   29.9913   61.1742   21.1945   51.0040] with 
clearing market price of 28. The simulation results with different methods, explained in 
chapter II are depicted in Fig. 3.14 and Fig. 3.15. 
It is shown that all the algorithms in Fig. 13 are capable of finding Nash equilibrium, 
however, Local Iterative NE Search and Evolutionary Iterative NE Search which are 
illustrated in Fig. 3.14 failed to find the equilibrium. It can be seen that for the both 
approaches strategies fluctuates between the lower bounds and a big value. For the case 
of comparison between the methods in Fig. 3.15, we can say that Cooperative CIWO, 
Competitive CIWO, and Discrete Minimization with DIWO converge very quickly, but 
Continuous Minimization includes an exhaustive process with a large number of fitness 
evaluations that imposes more time and increases computation complexity. Shortly, the 
efficiency of the proposed methods in this simulation is ranked as follows: 1) 
Cooperative CIWO 2) Competitive CIWO 3) Discrete Minimization with DIWO 4) 
Continuous Minimization with local profit maximization 5) Continuous Minimization 
with evolutionary profit maximization 6) Iterative Local and Evolutionary NE Search. 

 

  
(a)                                   (b) 

 
Fig. 3.14. a) Iterative Local Search to solve six-firm cournot model 
 b) Iterative Evolutionary Search to solve six-firm cournot model  



 

 26
 

  
(a)                                   (b) 

 
 (c)                                   (d) 

  
             (e)                                          (f) 

 
Fig. 3.15. Performance of different methods to solve the six-firm cournol model 

 

a) Cooperative CIWO b) Competitive CIWO c) Continuous Minimization with 
local profit maximization 

d) Continuous Minimization with 
evolutionary profit maximization 

e) Discrete minimization with 
DIWO f) DIWO minimization process 
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3. Transmission Constrained Electricity Markets with Nonlinear Demand 

Functions 
 
In this section, we study transmission constrained electricity markets. The utility (benefit) 
functions are given for each demander and the existence of NE is investigated, using two 
level optimization process described before. In all the examples in this section, utility 
functions are in the form of power functions which have the required properties of 
general utility functions like positive slope and convexity. 
 

A. Two-Bus Cournot Model 
 
The model for this network is depicted in Fig. 3.16. Two cases are studied for this game 
with T   = 300 and T   = 30. In the first case, there is a NE at [323  323] with a 
uniform price across the market, while in the second case, NE is located at [303 173], and 
locational price differences occur.  
 

 
 
The coevolution process to solve these two problems, using Cooperative CIWO is 
illustrated in Fig. 3.17, and also the results for T   = 30 are summarized in Table 3.6. 
 

 

  
(a)                                   (b) 

 
Fig. 3.17. a) Cooperative CIWO for two-bus nonlinear model with     = 300  

 b) Cooperative CIWO for two-bus nonlinear model with     = 30 

   ( ) = 143.8    .          ( ) = 70.41    .          ( ) = .01   + 10             ( ) = .01   + 10   
 
 

Fig. 3.16.  Two-bus Cournot model with nonlinear demand 
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Table 3. 6. Simulation Results for Two-Bus Nonlinear Model with     =     `      `        `     

303 173 333 143 -30 21 18 
 
 

B. Three-Bus Cournot Model 
 
For a more complex problem we introduce a three-bus model with nonlinear demand 
curves and transmission constraint      = 3000. The system is presented in Fig. 3.18. 

 
This game has a pure NE at [1893 1612 1795]. Cooperative CIWO was employed to find 
NE for this problem and the coevolution process for this game is depicted in Fig. 3.19. It 
is shown that our proposed algorithm converges to the optimal solution after a few 
epochs. 
 

 

 
 

Fig. 3.19. cooperative CIWO for three-bus nonlinear model 

   ( ) = 842.8    .      
   ( ) = 1767    .     
   ( ) = 1384    .     

  ( ) = 0.00786   + 1.3606  ,   ( ) = .010526   − 2.07807  ,   ( ) = .006478   + 8.105354   
 

Fig. 3.18. Three-bus cournot model nonlinear demand 
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4. Some Other Nonlinear Games 
 

A. Uniform-Price Spot Market 
 
In this section, we study the performance of our approach in Discrete Minimization with 
DIWO on a problem of computation of one Nash Equilibrium for a spot market with two 
generators. This problem was introduced in [7] and genetic algorithm was employed to 
solve it. There is a uniform-price electricity market with a price cap of 50 $/MWh and 
elastic load with inverse demand function  = −0.083    + 58.33. Generators bid their 
full capacity in the form of “price per MWh”, and so calculating clearing market price is 
a nonlinear process which is illustrated in Fig. 3.20. The production capacities and 
Marginal Costs (MC) for each generator are defined in Table 3.7, accompanied by 
strategy spaces for    and   .  
 

 
Table 3.7. Generation Data and Price Strategy Space 

              
Gen. 1 200 25 {25, 26, … 50} 
Gen. 2 300 30 {25, 26, … 50} 

 
Considering the strategy spaces, we are facing a discrete profit optimization problem, and 
so we use DIWO to find Nash Equilibrium for this game. Trace of fitness values for 
Discrete Minimization approach described in chapter II is presented in Fig. 3.21.a, and 
also the strategies evolution is depicted in Fig. 3.21.b. It is shown that after a few 
iterations the strategies converge to the point [31 36] which is one of the NEs for this 
problem. 
 

 
 

Fig. 3.20. Process of finding clearing market price for some typical elastic load demand curves and supply curves 
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B. A Simple Electricity Pool 
 
The model studied here is a simple version of that developed by von der Fehr and 
Harbord (1993) to represent the structure of the UK electricity market. In the UK, power 
producers bid their generating plant into a pool, where a market price is determined as the 
bid of the last producer required to satisfy demand. All producers who have bid lower 
than this receive the market price for their output. This problem was analyzed and solved 
in [8], using coevolutionary programming with genetic algorithm (GA). 
The profit function for this game is characterized in (3.10) and (3.11). 
 

  (  ,  ) = ⎩⎪⎨
⎪⎧10   8   9   10   0         >     >     =     > 45 >     > 45  (3.10) 

  (  ,   ) =   (  ,   ) (3.11) 
 
The pure strategy equilibrium for this model can be intuitively deducted when one of the 
players bids the maximum (in this problem 45) while the other bids less than 36. 
The coevolution process for this game using Cooperative CIWO is illustrated in Fig. 
3.22. We can see that the strategy for the maximum taker is quickly converge to 45, but 
the strategy for the other one fluctuates for the values less than 36.   
 

  
(a)                                   (b) 

 
Fig. 3.21. a) Trace of fitness values for Discrete Minimization approach using DIWO in uniform-price spot market  

 b) strategies evolution for Discrete Minimization approach using DIWO in uniform-price spot market 
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C. A Dynamic Nonlinear Game 
 
In this section, we study the performance of our proposed coevolutionary algorithm to 
find NE for dynamic nonlinear games. This is a numerical example with two players and 
two stages which was introduced in [9] and Iterative Evolutionary Search with gentic 
algorithm was recruited to solve this problem. The payoff for this problem is shown in 
(3.12). 
   (   ,    ) = ∑ (1 −    −    )   −            (3.12)    =   ,   +          is given 
 
The coevolution process to find Nash Equilibrium for this problem, using Cooperative 
CIWO is depicted in Fig. 3.23. We can see that the strategies converge to the global NE 
after a few iterations. 
 

 
 

Fig. 3.23. Cooperative Coevolutionary process for the posed dynamic nonlinear game 
 

 
 

Fig. 3.22. Cooperative Coevolutionary process for the electricity pool model in (8) and (9) 
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CHAPTER IV 
 
 

CONCLUSION 

 

In this thesis, we studied NE search approaches to solve nonlinear games. Coevolutionary 
programming, Iterative NE search, and NE as a minimum of a function were the major 
frameworks for our proposed methods. We tried to introduce the best model for each 
method so we studied the performance of the algorithms with a numerical example and 
also we provide a comparison between the approaches. Consequently, the proposed 
methods were applied to a large number of games in electricity market models with two 
to six players. Transmission-constrained electricity markets with linear and nonlinear 
demand functions and unconstrained electricity markets with a nonlinear total demand 
were the main case studies in this work. We adopted Invasive Weed Optimization for all 
the evolutionary computing purposes, and our proposed Coevolutionary Invasive Weed 
Optimization (CIWO) was capable of finding global NE for all the problems we studied. 
Also, we showed its novel bilateral ability when there is no pure NE. Likewise, the 
proposed Discrete Invasive Weed optimization (DIWO) showed successful results in NE 
search for games with discrete strategy spaces. 
 
For future works, we can study the performance of the proposed algorithms in finding all 
the Nash Equilibria in a game. Also, the methods can be employed to identify mixed 
strategy NE in linear and nonlinear games. Furthermore, due to recent emergence of 
agent-based economics and its distinctive behavior toward uncertainty in the markets and 
irrationality of the players, and also its ability for selecting the most plausible equilibrium 
among several equilibria or managing nonexistence of NE, it is suggested to use above-
mentioned evolutionary algorithms as learning mediums for games simulation in an 
agent-based approach. 
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Appendix A. An Introduction to Invasive Weed Optimization (IWO) 

Invasive weed optimization was developed by Mehrabian and Lucas, in 2006. IWO 
algorithm is a bio-inspired numerical optimization algorithm that simply simulates 
natural behavior of weeds in colonizing and finding suitable place for growth and 
reproduction. Despite its recent development, it has shown successful results in a number 
of practical applications like optimization and tuning of a robust controller, optimal 
positioning of piezoelectric actuators, developing a recommender system, antenna 
configuration, etc. To model and simulate colonizing behavior of weeds for introducing a 
novel optimization algorithm, some basic properties of the process is considered:  
 
1) “A finite number of seeds are being dispread over the search area (initializing a 

population); 
2) Every seeds grows to a flowering plant and produces seeds depending on their fitness 

(reproduction); 
3) The produced seeds are being randomly dispread over the search area and grow to 

new plants (spatial dispersal); 
4) This process continues until maximum number of plants is reached; now only the 

plants with higher fitness can survive and produce seeds, others are being eliminated 
(competitive exclusion). The course continues until maximum iterations is reached 
and hopefully the plant with best fitness it the closest to the optimal solution.” 

 
Some of the distinctive properties of IWO in comparison with other evolutionary 
algorithms are reproduction, spatial dispersal, and competitive exclusion.  
 
In Invasive Weed Optimization algorithm the process begins with initializing a 
population. It means that a population of initial solutions is randomly generated over the 
problem space. Then members of the population produce seeds depending on their 
relative fitness in the population. In other words, the number of seeds for each member is 
beginning with the value of      for the worst member and increases linearly to      for 
the best member. For the third step, these seeds are randomly distributed over the search 
space by normally distributed random numbers with mean equal to zero and an adaptive 
standard deviation. The equation for determining the standard deviation (SD) for each 
iteration is presented in (A.1). 

      = (            ) (       )          −        +         (A.1) 

 
where         is the maximum number of iterations,       is the SD at the current 
iteration and n is the nonlinear modulation index. The produced seeds, accompanied by 
their parents are considered as the potential solutions for the next generation. Finally, a 
competitive exclusion is conducted in the algorithm. It means that after a number of 
iterations the population reaches its maximum, and an elimination mechanism should be 
employed. To this end, the seeds and their parents are ranked together and the ones with 
better fitness survive and are allowed to reproduce. Pseudocode for IWO algorithm is as 
follows: 
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The set of parameters for IWO is provided in Table A.1. 
 
Table A.1. IWO Parameters 

Symbol Definition    Number of initial population       Maximum number of iterations     Problem dimension      Maximum number of plant population      Maximum number of seeds      Minimum number of seeds   Nonlinear modulation index          Initial value of standard deviation        Final value of standard deviation 
 
 
 
 
 
 
 
 
 
 
 

Algorithm A.1. Psuedocode for IWO algorithm 
 
1. Genearte random population of    solutions 
2.  =: 1  
3. do 

3.1. Compute maximum and minimum fitness in the colony 
3.2. For each individula  ∈   

3.2.1. Compute number of seeds of  , corresponding to its fitness 
3.2.2. Randomly distribute generated seeds over the search space with 

normal distribution around the parent plant ( ) 
3.2.3. Add the generated seeds to the solution set,   

3.3. If  >      
3.3.1. Sort the population N in descending order of their fitness 
3.3.2. Truncate population of weeds with smaller fitness until  =      

3.4.  =:  +1 
4. Repeat 3 until the maximum number of iterations 
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Appendix B. Discrete Invasive Weed Optimization (DIWO) 
 
Due to IWO’s distinctive properties, its global and local abilities for exploration and 
exploitation, and also its successful results in a considerable number of applications after 
a short time of its development, we are motivated to introduce Discrete Invasive Weed 
Optimization (DIWO). DIWO is the modified version of IWO, suitable for discrete 
optimization problems like vehicle routing, job scheduling, graph coloring, quadratic 
assignment, routing for telecommunication networks, etc. 
The framework for DIWO is the same as IWO’s, but some considerations are taken for 
exploration in discrete search spaces. The psuedocode for DIWO is given as follows: 
 

 
 
The process for computing the seeds and also competition exclusion is completely the 
same as IWO, but seeds generation has been modified to random selection of solutions 
from the hypercube of radius   in the    -dimentional space of feasible solutions around 
the plant with a normal distribution. 

 
 

 

 
 

Algorithm B.1. Psuedocode for DIWO algorithm 
 
5. Genearte random population of    from the set of pheasible solutions 
6.  =: 1  
7. do 

7.1. Compute maximum and minimum fitness in the colony 
7.2. For each individula  ∈   

7.2.1. Compter number of seeds of  , corresponding to its fitness 
7.2.2. Randomly select the seeds from the pheasible solutions around the 

parent plant ( ) in a neighborhood of radius   with normal distribution  
7.2.3. Add the generated seeds to the solution set,   

7.3. If  >      
7.3.1. Sort the population N in descending order of their fitness 
7.3.2. Truncate population of weeds with smaller fitness until  =      

7.4.  =:  +1 
8. Repeat 3 until the maximum number of iterations 
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