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Abstract. Ant Colony Optimization (ACO) a nature-inspired metaheuristic 
algorithm has been successfully applied in the traveling salesman problem 
(TSP) and a variety of combinatorial problems. In fact, ACO can effectively fit 
to discrete optimization problems and exploit pre-knowledge of the problems 
for a faster convergence. We present an improved version of ACO with a kind 
of Genetic semi-random-restart to solve Multiplicative Square Problem which 
is an ill-conditioned NP-hard combinatorial problem and demonstrate its ability 
to escape from local optimal solutions. The results show that our approach 
appears more efficient in time and cost than the solitary ACO algorithms.  
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1   Introduction 

Ant algorithms are a class of population-based metaheuristic algorithms for solving 
Combinatorial Optimization problems. Ant Colony Optimization (ACO) is 
biologically inspired from the foraging behavior of real ants. ACO is an iterative 
process in which repeatedly, probabilistic candidate solutions are constructed by 
heuristic knowledge of the problem and pheromone trails as communication 
mediums. The main points of ACO are distributed computation, positive feedback and 
greedy construction heuristics. After the first ACO algorithm proposed by Dorigo 
(1992) [1], different types of ACO have been developed, most pursuing new ways of 
exploration and exploitation. Moreover, the combination of ACO and local search 
algorithms has led to successful results and obtained better performance on variety of 
problems. To date, ACO has been applied in many combinatorial problems, including 
Traveling Salesman Problem (TSP), quadratic assignment, vehicle routing, graph 
coloring, routing for telecommunication networks, sequential ordering, scheduling, 
data mining, and so on. 

In this paper, we introduce an improved version of ACO to maximize the score of 
Multiplicative Squares (MS). The maximum version of MS is a Square such that sum 
of the products of its rows, columns, diagonals, and broken diagonals is maximum. 
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It’s a complicated problem, because a precision of 20+ digits is needed for the 
dimensions greater than 10. So a very defiant and crafty algorithm must be applied to 
the problem. A genetic inspired random-restart is added to the ACO algorithm as a 
survivor approach to refrain from local maxima.  
In section 2, Multiplicative Square is introduced, while optimization algorithms, 
including ACO and local search methods are described in section 3. Next in section 4, 
our methodology is explained and the results are summarized in section 5. Finally, 
conclusions are drawn in section 6. 

2   Problem Description of Multiplicative Squares 

The Multiplicative Squares are a class of squares filled by the numbers 1 to n  that 
the products of their rows, columns diagonals, and broken diagonals have a special 
feature. The most well-known type of MS is Kurchan square posed by Rodolfo 
Kurchan (1989), which is originated from magic square. The maximum product 
minus the minimum one is as small as possible in a Kurchan Square. However, in the 
MAX version of MS, sum of the following products is maximum. The score function 
of a MS of dimension 3 is illustrated in Fig. 1. 
 

 
 
MS problem is an ill-conditioned NP-hard problem in which a small change of 

indexes may cause larger errors. Therefore, escaping from local optimums seems to 
be hard in larger dimensions that more precision and more exploration are needed. 

In MAX MS, it can be concluded that the greater numbers should be in the same 
row, column, diagonal, or broken diagonal, so that the products and at last the score 
will be greater. We use this feature in our approach that will be described in section 4. 

3   Optimization Algorithms 

3.1   Ant System  

The first ACO algorithm called Ant System applied to Traveling Salesman Problem 
(TSP) by Dorigo. AS makes up the main framework of other ACO algorithms and is 
considered as a prototype. In TSP each of m artificial ants generates a complete tour 
by a probabilistic rule (1), which is the probability that ant k in city i visits city  . 

 

5 1 8 
3 9 4 
7 2 6 

   Rows:       5*1*8 = 40,  3*9*4 = 108,  7*2*6 = 84 
   Columns:      5*3*7 = 105,  1*9*2 = 18,  8*4*6 = 192 
   Diagonals:       5*9*6 = 270,  1*4*7 = 28,  8*3*2 = 48       
   Anti-diagonals:     8*9*7 = 504,  1*3*6 = 18,  5*4*2 = 40 
   MAXMS:     SF= 40+108+84+105+18+192+270+28+48+504+18+40= 1455 
   Kurchan MS:  SF= 504-18 = 486 
 
Fig. 1.  An example of a 3*3 multiplicative square and Score Function (SF) evaluation for 

MAX MS and Kurchan MS 
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Where τ is pheromone, η ,  is heuristic function and is equal to    ,  the inverse 

of the difference between city i and j, N   is the set of cities that haven’t been visited 
by ant k , α  and β  are parameters which shows the relative importance of 
pheromone versus heuristic or exploitation versus exploration.  

Equation (1) shows that ants prefer paths with shorter length and higher amount of 
pheromone, so they independently generate tours by pre-knowledge of the problem 
and cooperative informative communication. Once all the ants complete their tours 
the pheromone trails updates, using (2) and (3). 

 
                        τ , = (1 − ρ). τ , + ∑ Δτ ,                      (2) 

                                    Δτ ,  =       ,       (i, j) ∈ tour done by ant k0  ,                                       otherwise             (3) 

 
Where ρ is evaporation rate, L  is the length of tour taken by ant k, Q is a 
constant, and m is the number of ants.  

3.2   ACO Algorithms 

After Ant System, Researchers started to improve the performance of ACO. A first 
improvement of ACO was elitist strategy (AS     ) [2], which was simply considered 
more emphasis on the global-best tour. Another improvement was AS     as an 
offspring of AS     , proposed by Bullnheimer, Hartl and Strauss [7]. It sorts the ants 
and then the trails are updated by only the first ω − 1 ants according to (4).  

 
               τ , = (1 − ρ). τ , + ∑ (ω − 1). Δτ ,  + ω.       Δτ ,            (4) 

 
Where Δτ ,  =     and  Δτ ,   =      . 

Stüzle and Hoos introduced MAX-MIN Ant System (MMAS) [8]. In MMAS trails 
are limited to an interval [τ    , τ   ], so it help ants not to converge to local 
optimum. Further, in MMAS, only the best ant (iteration-best or global-best) is 
allowed to deposit pheromone. Sometimes, for more exploration an additional 
mechanism called Pheromone Trail Smoothing is applied to MMAS. 

Gambardella and Dorigo in 1996 proposed Ant Colony System (ACS) [11], [3], 
which was a simplified version of Ant-Q. Ant-Q is a link between reinforcement 
learning and Ant Colony Optimization. However, ACS simply and more efficiently 
describes the same behavior as Ant-Q. Two strategies are used in ACS to increase the 
previous information exploitation. At first, trails are updated by the best ant, like 



MMAS, and secondly, ants select the next city, using a pseudo-random proportional 
rule [11]. The rule states that with probability q  the city j is selected, where j =argmax ∈    [τ , ] . [η , ]   , while with the probability 1 − q  a city is chosen using 
(1). Furthermore, there is a distinct difference between ACS and other ACO 
algorithms and that is trails are updated, while the solutions are built. It’s similar to 
ant-quantity and ant-density approaches that update pheromone trails synchronic to 
making tours. However, in ACS ants eat portion of the trails as they walk on the path. 
So the probability that the same solutions are constructed in an iteration decreases. 

AS Local Best Tour (AS-LBT) [6], is another improved kind of AS, in which only 
local information is used to reinforce trails. It means that each ant updates its trail by 
the best tour it has found to date. This approach shows more diversity than AS. 

Some other improvements in the field of ACO are the Multiple Ant Colonies 
Algorithms [9], which exploits interactions between colonies, Population-based ACO 
(P-ACO), which makes up a special population of good solutions, and Omicron ACO 
(OA), which is inspired by MMAS and elitist strategy. 

In addition a number of hybrid algorithms have been developed that use good 
features of ACO. For example the combination of Genetic Algorithm (GA) and ACO, 
called Genetic Ant Colony Optimization (GACO) have been used to solve different 
combinatorial problems [4], [5]. 

Moreover, ACO algorithms often exploit Local Search to improve their 
performance which is explained in the next section. 

3.3   Local Search Algorithms 

Local search is a greedy algorithm for solving optimization problems by exploring 
among candidate solutions.  It starts with an initial solution and iteratively moves to 
neighbor solutions. If a better solution is found it will be replaced by the previous one 
and the procedure is repeated until no improving solution can be found. 

The very simple version of local search is Hill Climbing, in which the first closest 
neighbor is selected to move. The other well-known local search algorithms are 2-opt 
and 3-opt. 

There exist two crucial problems with local search algorithms that they are easily 
get trapped in local optimum, and finally their results are strictly dependent on initial 
solutions [10]. For the first problem some solutions have been devised, like random-
restart strategies, while for the latter, heuristic and evolutionary algorithms like ACO 
can be used to generate appropriate initial solutions for local search algorithms [11]. 

4   Methodology 

In this section we introduce our approach to solve the MAX MS problem. In ACO 
metaheuristic the main task is to find a graph representation for the problem so that 
ACO searches for a minimum cost path over the graph. 

In each iteration, ants construct a candidate solution individually, going from the 
first layer to the last one. In Each layer a number between 1 to n  is selected which 



has not been selected with the same ant before. These numbers are used as indices for 
feasible Multiplicative Squares. It means that the numbers n  to 1 are placed in the 
square respectively, according to indices generated by the ants. 

 
Once the tours are completed ants deposit pheromones on the edges, using (5). 
 

                   ,  =        ,       ( ,  ) ∈                   0  ,                                         ℎ                    (5) 

 
Where FS  is some of the product of rows, columns, diagonals, and broken 
diagonals (or Function Score) of the square, constructed by ant  . Note that the ratio       is inverse to one suggested in (3) because of the maximization case. 

Here we suggest a heuristic function based on the feature, introduced in section 2. 
The heuristic function applied to each index according to a defined rule. When an ant 
is in an arbitrary index the heuristic function for the next step to any index in the same 
row, column, diagonal, or broken diagonal is λ and to other indices is μ which is 
less than λ. In this respect there is more probability for greater numbers to be 
multiplied and a larger FS is obtained. For example the mechanism has been shown 
for a 4 by 4 square in Fig. 2. 

 

      
For ACO algorithm we used MMAS with a little difference. Actually In our 

method, the best ants, both iteration-best and global-best deposit pheromone and the 
heuristic function changes as the iteration increases. Adding iteration-best ants as the 
communicative elements are for more escape from so many local optimums in the 
problem, and global-best ants speed up the convergence. Parameter β decreases by 
the iterations and then increases in the last part of the process for modulating 
exploration during the search algorithm. Moreover, eating ants are used in the case of 
local optimum trap which are the components of ACS algorithm. 
   In the next step, ACO algorithms are accompanied by local search algorithms. In 
fact pheromone trails are updated by the local search solutions. In our approach the 
best tours (g-b and i-b) which are obtained in that iteration get improved by 2-opt 
local search. 

As we said in section 3, local search algorithms may get stuck at a local optimum, 
so we pose a genetic semi-random restart that runs in an outer loop and endows new 
survivor initial solution to commence ACO and local search algorithms again. 

In our genetic restart process, 2 parents reproduce 3 different children by a kind of 
cross over operator and each of the parents grants a child by mutation. 

                      *           *                                     
   (a)     (b) 

Fig. 2.  Heuristic function is illustrated for two sample conditions. The 
current position of the ant is displayed by “*”. 



In cross over two break cuts are selected from 2 to n − 1 randomly. Next, the 
block between these two numbers are chosen from the first parent and then moved to 
the right corner, left corner, or the same place of a new tour to devote 3 distinct 
children. The remaining vertices are filled with the other parent. An example of our 
cross over is depicted in Fig. 3. 

 

         
In mutation, the block is remained for the parent 2 and the remainder is filled by 
random permutation. Just the same, the complement block of parent 1 is constant and 
the remnant is built randomly (Fig. 4). Hence, the two new children are different from 
the three previous ones, reproduced by cross over as much as possible. 

 

        

5   Experimentation and Results 

To verify the efficiency of the proposed algorithm, it was employed on MS7 (7*7 
grid) and MS8. Experimentally, We used parameter settings, α = 1, initial value of β = 3, ρ = .4, Q = the best SF found up to that iteration [6], eat rate = .9, λ = 1, 
and μ = .5 for all experiments. In the case of MS7, the population size of about 50 
(equal to the number of variables [2], [12]) ants was used, and the trails were set to 
interval, [0.002 , 2], with an initial value of 2. While for MS8, population size was set 
to 64, and trails were limited to [τ    , τ   ] = [.001 , 2] and initial value of 2.  

10 trials were conducted, and all the tests were carried out for 600 iteration. The 
results are presented in Table 1. Flexible heuristic is our complete algorithm with β 
modulation described in previous section and genetic random restart, while fixed 
heuristic is the same as the first one without β modulation, and finally, No GA 
restart represents the algorithm without any restart process.  

Table 1 shows a good performance of our algorithm specially compared with the 
same procedure without restart algorithm. Furthermore, the average number of 
incidents that the introduced Genetic restart algorithm granted new initial survivor 
solution to ACO algorithm is stated in Table 2. 

Parent 1 1 3 4 2 5 
Parent 2 4 5 1 2 3 

Child of parent 1 1 4 3 2 5 

Child of parent 2 2 5 1 4 3 
 

Fig. 4.  An example of a two cut mutation. 

Parent 1 1 3 4 2 5 
Parent 2 4 5 1 2 3 
Child 1 3 4 5 1 2 
Child 2 5 1 2 3 4 
Child 3 5 3 4 1 2 

 
Fig. 3.  An example of two cut cross over with 3 children. 

 



 
 

                  
    
   To illustrate the operation of our Genetic semi-random-restart algorithm, trace of 
a particular run is demonstrated in Fig. 5. It shows that the posed restart mechanism 
improves the robustness and precision of the whole algorithm and efficiently helps to 
come out of the local optimums. 

 

         
 

Fig. 5.  Successful operation of the posed restart algorithm to evade local optimums. 

Table 2.  Genetic Semi-Random-Restart Performance 

Method 
Avg. number of 

successive genetic 
restart (MS7) 

Avg. number of 
successive genetic 

restart (MS8) 
Fixed heuristic 1.6 2.4 

Flexible heuristic 1.3 2.3 
                    

 
Table 1.  Experiment results 

 
(a) MS7 

Method Best Avg. Std. Dev. Std. 
Dev % 

Best 
err.% 

Avg. 
err.% 

Flexible heuristic 836927418654 836545183884.3 310273380.3 0.037 0 0.046 

Fixed heuristic 836864383934 836387896300.2 282729277 0.034 0.0075 0.064 

No GA restart 836590536598 835890051299.2 472719981.5 0.057 0.0403 0.124 

 
(b) MS8 

Method Best Avg. Std. Dev. Std. 
Dev % 

Best 
err.% 

Avg. 
err.% 

Flexible heuristic 402702517088866 402397450057731 410397887424.8 0.102 0 0.076 

Fixed heuristic 402693316462602 396228893243407 12487304223038.1 3.15 0.0023 1.608 

No GA restart 402672245516278 379411679729931 27191910644358.2 7.17 0.0075 5.784 

                   

Survivor semi-random-restart 
 

iteration 

SF
 



6   Summary and Conclusion 

This paper has introduced an improved version of ACO, with the aid of local search 
algorithms and specially a genetic restart algorithm, in order to global optimization. 
Max Multiplicative Square (MS) problem was studied as an ill-conditioned NP-hard 
combinatorial problem and a particular heuristic function was devised for that. 
Results have shown that our approach was successful to satisfy the goal of global 
optimization.  

Further work can be in the direction of testing new random-restart techniques, in 
particular those which substantially differ from local search mechanism. About the 
MS problem, a better heuristic function can be a great step to decrease the time of 
evaluation. In addition, a new graph representation might be designed that more 
efficiently exploit the features of problem, such as symmetry and the importance of 
big numbers.  
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