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Abstract—In General, Learning new skills by imitation is
faster, safer, and more efficient. In robotics research, imitation
also provides an implicit and user-friendly mechanism for robot
programming. But, according to the research in neuroscience and
cognitive science, true imitation is accompanied by abstraction
and conceptualization. This paper presents a method for au-
tonomous acquisition, generalization, recognition, and regenera-
tion of abstract (relational) concepts through perception of spatio-
temporal demonstrations and identification of their functional
effects. In fact, the effects help to classify the concepts based on
their functional properties. As a result, the concepts are repre-
sented by prototypes which abstract different perceptual variants
of a concept but make similar functional effects. Performance
of the proposed algorithm is evaluated in a task of imitating
a bunch of behaviors based on their emotional effects. Results
of the experiments on a humanoid robot show that our model
is successful for extraction, abstract representation, accurate
recognition, and reproduction of the learned concepts.

I. INTRODUCTION

Imitation plays a crucial role in every-day life of human
and some animals. In fact, imitation is one of the main
methods of social learning. In this regard, imitation learning
is more efficient in time, energy, and safety than individual
learning. There are also other types of social learning which
are somehow similar to imitation like mimicking or sampling,
but according to [1] and [2], imitation is discriminated from
others by abstraction, conceptualization and symbolization.
In fact, perfect imitation is accompanied by comprehension
and generalization which are attained by abstraction. Hence,
skills can be represented in a generalized symbolic level
which is desired for high level cognitive tasks [3]. In addition,
abstraction helps for efficient memory management, handling
the huge real world search spaces [2], and quick knowledge
transfer from an agent to another agent or from a situation to
another situation [4].

Recently, symbolization and conceptualization has drawn
attention in robot learning by imitation [2], [4]–[9]. In this
respect, Hidden Markov Models (HMMs) have been exten-
sively used for development of imitation models [2], [6],
[8], [9]. It is because HMMs are powerful statistical tools
for abstraction, generalization, recognition and generation of
spatio-temporal signals. They can deal simultaneously with
the statistical variations in the dynamics and the statistical
variations in the observations. Consequently, HMMs can pro-
vide a unified mathematical formulation for learning from
imitation. For example, Kulic et al. [8] developed an algorithm

for incremental and autonomous learning, clustering, symbol-
ization, recognition, organization, and regeneration of whole
body motion patterns, using HMMs. However, the majority of
previous works on conceptual imitation learning are dedicated
to form concepts based on similarity in perceptual space, and
there is not enough work to find abstract concepts which share
functional properties. We think that although perceptual cate-
gorization is necessary to abstract demonstrations in imitation,
however, there exists knowledge (e.g. functional meaning or
effect of the action) which cannot be transferred merely by
perceptual information.

The concepts which consider both perceptual and functional
characteristics are called relational concepts. In fact, this paper
aims to learn these kind of concepts through imitation. To our
knowledge, there are only two works for conceptual imitation
learning based on relational concepts. The first one was pro-
posed by Mobahi et al. [5], [7] who introduced a bio-inspired
model to acquire abstract relational concepts from teacher
demonstrations, using reinforcement learning. However, unlike
our procedure which is suitable for sequence of observations
(e.g., human motion), their proposed algorithm is only appli-
cable for concept acquisition from single observations. The
second work which is the closest to ours has been introduced
in [9]. This model identifies functional similarity between
demonstrations through interaction with the teacher which
is somehow tedious. But in our proposed model, functional
similarity is specified by classifying the effects of actions
which is more implicit and user-friendly. For more detailed
review of related works on imitation and conceptualization,
the interested reader is referred to [8] and [9].

Hence, the aim of this paper is to propose an incremental
and gradual learning algorithm for autonomous acquisition,
generalization, recognition and regeneration of relational con-
cepts through perception of spatio-temporal demonstrations
based on their functional effects. Perceptual abstraction of
demonstrations is fulfilled stochastically by HMMs. However,
an abstract (relational) concept is obtained as a collection of
HMMs which might represent different perceptual properties
but show the same functionalities. Functional similarities be-
tween different demonstrations are identified by recognizing
effect of the executed actions. In the proposed algorithm,
the concepts and proto-symbols emerge automatically without
explicit human intervention. Also, the algorithm is invariant
to the order of incoming demonstrations and acquires the



concepts in parallel.
This paper is organized as follows. In section II, some

basics and theories about concepts are reviewed. In addition,
conceptual imitation is elaborated, and an approach is intro-
duced to teach a concept oriented agent. Section III describes
the proposed algorithm for learning and recall phases. In
section IV, an experimental scenario is introduced to evaluate
performance of the model. Also, results of the experiments,
including abstraction, recognition, and generation of concepts
are presented in this section. Finally, conclusions are drawn in
section V.

II. CONCEPTUAL IMITATION

A. Concepts
According to representational theory of mind, concept is a

mental representation of world in agent’s mind. It can be an
idea, object, or event generally defined as a unit of meaning
or knowledge [10]. This unit is constructed based on other
units which describe some characteristics about the concept.
In fact, these physical and/or functional characteristics make
principles to categorize perceptions from world into concepts.
For concept acquisition in natural environments, three points
are desired [11]. First, concepts should be learned gradually
as experience of the agent is increasing during the lifetime.
Second, the concepts should be learned in parallel to cope
with the diversity in type and order of incoming knowledge.
Finally, like any learning procedure, it is very favorable to
learn fast.

Concepts are categorized into three levels of abstraction,
namely, perceptual, relational, and associative [10]. Percep-
tual concepts are formed based on similarity of instances in
perceptual space. Relational concepts are formed not only by
perceptual similarity but also by external information show-
ing functional properties. However, in associative concepts,
physical similarity is not important, but shared functional
characteristics of the concepts are influential. An illustration
of three types of concepts is provided in Fig. 1.
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Fig. 1. Three types of concepts (from left to right): Perceptual, Relational,
and Associative [9].

An important problem with a concept is how to represent it.
Three theories are proposed in [12] to represent the concepts:
exemplar, prototype, and rule theories. In exemplar theory, all
instances of a concept are memorized. In prototype theory,
a summary of instances are derived to represent various in-
stances of a concept. This theory is more abstract and efficient
to come up with limitations in memory. Finally, rule theory
uses a match/mismatch process or boundary specification to
represent concepts.

B. Problem Description

In this work, we want to devise an algorithm for au-
tonomous learning and acquisition of relational concepts from
imitation. In this way, demonstrated spatio-temporal behaviors
are abstracted based on similarity in both perceptual and
functional space. To this end, we favor to represent concepts
by prototypes. Actually, the ideal situation is when we have the
least number but the most general prototypes to understand a
concept. Consequently, in the face of new demonstrations, the
previously learned concepts can be recognized using generated
proto-symbols, and there is no need of learning the behavior
(motor commands to perform the behavior) from scratch. Also,
behaviors which are associated with the same concept can be
used alternatively in place of each other according to robot’s
comfort or affordance.

The real world is full of spatio-tempral experiences with
relational concepts. For example, there are perceptually dif-
ferent actions which have the same functional effect in the
environment (e.g., there are different body gestures that make
people laugh). In our everyday life, we are facing with
instances of these concepts permanently. A robot which is an
inhabitant of the human environment will also faces similar
experiences during colocation and interaction with the human
over its entire lifespan. Hence, there should be an incremental
and gradual mechanism to learn and acquire these concepts.

C. How to Teach Relational Concepts?

As described in section II-A, relational concepts cannot
form merely from perceptual observations, and external in-
formation should be also provided to understand their func-
tional characteristics. This information can unify perceptually
scattered prototypes which represent the same concept. We
think that the external information can be obtained through
interaction with the teacher or investigation of the effects
of demonstrated actions in the environment. For the former,
Hajimirsadeghi et al. [9] proposed an interactive learning
algorithm inspired from same/different judgement to identify
functional similarity between demonstrations. However, in this
paper we are focused on the effects of actions. In fact, if the
agent can recognize the effect of demonstrated actions in the
environment, it will be no need to interact with the teacher.
In this case, the agent classify the demonstrations with similar
effects in the same concepts. More details are explained in the
next section.

III. THE PROPOSED ALGORITHM

In this algorithm, HMMs are used for abstraction and
symbolization of spatio-temporal perceptions. As a result,
relational concepts are represented by HMM exemplars and
prototypes which might encode different perceptual informa-
tion but demonstrate the same functional properties. People
unfamiliar with HMM should refer to [13]. Also, to find the
algorithms for motion generation through HMM, one might
see [2], [8].



A. Learning Phase

The learning algorithm is an iterative procedure where a
cycle is repeated whenever a new demonstration is perceived.
To ease explaining the learning algorithm, assume we are at the
middle of execution where some concepts have been formed,
and some prototypes and exemplars have been stored in the
agent’s memory. In our algorithm, an exemplar is an HMM
made up of only one demonstration. However, prototypes are
HMMs formed by unifying perceptually similar exemplars
in the memory. Accordingly, we store the exemplars and
prototypes in two different sets, namely Working Memory
(WM) and Long-Term Memory (LTM), respectively. Finally,
each concept is defined as a collection of prototypes and
exemplars, and all the concepts together make the set of
concepts Q:

WM =
⋃
λm;λm is an HMM exemplar, (1)

LTM =
⋃
λm;λm is an HMM prototype, (2)

Q =
⋃
qk; qk is a concept formed by a number

of HMM prototypes and exemplars. (3)

However, to have better understanding of the algorithm,
the concepts have been embodied into symbolic units in Fig.
2, and the exemplars and prototypes have been connected to
them. In fact, in the proposed algorithm, the exemplars and
prototypes membership in the concepts are described by two
functions cW and cL which associate exemplar and prototype
indexes with concept indexes, respectively:

cW : N|WM | → N|Q|, (4)

cL : N|LTM | → N|Q|, (5)
NI := {1, 2, · · · , I} ; I ∈ N. (6)
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Fig. 2. Associative memory of exemplars, prototypes, and concepts.

Considering above definitions and assumptions, a schematic
illustration of the algorithm is provided in Fig. 3. Detailed
explanation of this algorithm is presented in the following
paragraphs.

Assume that a novel demonstration is perceived by the
robot. First, the effect of the demonstrated action is recognized.

Then, it is investigated if there is any equivalent sensory-motor
concept for the recognized effect in the memories. If there is
no equivalent concept, a new concept should be generated. For
this purpose, the new perceived demonstration is encoded into
an HMM, is stored as an exemplar in the WM and make the
new concept.

On the other hand, if there is an equivalent concept (e.g.
qk) for the recognized effect, this concept should be modified
according to the new perception. To this end, first it is probed
if there is any prototype in the LTM which can absorb
the perceived demonstration. Hence, the likelihood of the
perception sequence (x = x1x2 · · ·xT ) is computed against all
the HMM prototypes of this concept, using forward algorithm.
Next, the most probable prototype is selected according to (7):

i = arg max
m,λm∈LTM,cLm=k

P (x|λm). (7)

Now, it is proposed that if the likelihood of this prototype is
high enough, the perception sequence can be absorbed by the
prototype. To evaluate whether the likelihood is high enough
or not, the following criteria is used. If the log likelihood of the
new perception given the winning HMM prototype is greater
than the minimum log likelihood of that HMM’s contents (i.e.,
the perceptions previously encoded in that HMM), the likeli-
hood of this prototype is said to be high enough. We call the
aforementioned minimum log likelihood value ll min which
is adjusted whenever a new HMM prototype is generated or
modified. Hence, the following two cases are considered.
• The Log Likelihood of the Winning Prototype is greater

than ll min :
In this case, the only thing to do is to strengthen (i.e.
retrain) that HMM prototype by the new spatio-temporal
perception. To this end, a modified form of re-estimation
formulas suited for multiple observation sequences can
be used [13]. The algorithm works by over-weighting the
HMM prototype in order to consider the fact that it is
built from multiple sequences.

• The Log Likelihood of the Winning Prototype is less than
ll min :
This is the case when the log likelihood of the winning
HMM prototype is not high enough to absorb the new
perception. In this situation, the perception sequence is
encoded as a new HMM exemplar, stored in the WM, and
linked to the equivalent concept (i.e., cW is modified).
The reason to separate this case from the previous one is
that there might have formed no prototype in the memory
for the new perception yet, and so the most probable
prototype is not really a representative for that perception
sequence.
Also note that if the equivalent concept has no prototype
in the LTM, again the routine explained in this case (i.e.,
making a new exemplar) is carried out.

Following the procedure explained so far, the WM is over-
populated with exemplars after a short time. So, we must have
an abstraction and consolidation mechanism to merge HMM



exemplars and make HMM prototypes which are stored in the
LTM. For this purpose, whenever an exemplar is stored in the
WM of a concept and the number of exemplars associated
with that concept exceeds a threshold number (Numth), then
a clustering process gets started on both HMM exemplars and
prototypes of that concept. In this work, we use a mechanism
similar to the algorithm proposed in [8] to cluster HMMs based
on the pseudo-distance:

D (λ1, λ2) =
1

T

[
logP

(
x1|λ1

)
− logP

(
x1|λ2

)]
, (8)

where, λ1 and λ2 are two HMM models, x1 is a perception
sequence generated by λ1, and T is the length of x1. Finally
a symmetric distance is defined as:

Ds =
D (λ1, λ2) +D (λ2, λ1)

2
. (9)

Now that the distances between HMMs are specified, an
agglomerative algorithm which performs a complete link hier-
archical clustering is used to construct new prototypes. Final
clusters are selected based on two criteria, i.e., surpassing
the minimum number of elements and falling behind the
maximum distance measure. Maximum distance measure is
defined according to the mean (µD) and standard deviation
(σD) of the distances between all the HMMs in the concept:

Dcutoff = µD −Kcutoff · σD. (10)

After this operation, if new clusters are produced, new
HMM prototypes are trained with their associated elements
in the clusters, using Baum-Welch algorithm or modified
re-estimation formulas explained before. These consolidated
prototypes are stored in the LTM.

In the schematic illustration of the algorithm, there are also
some other functions, namely New W and New C to make
new exemplars and concepts, respectively:

New W : Ω
(
xdim

)
→WM, (11)

New C := WM → Q, (12)

where, Ω
(
xdim

)
denotes the set of all finite sequences

(or spatio-temporal signals) with dimension dim. Hence, in
New W function, a new HMM is trained with the perceived
dim-dimensional sequence and stored in the WM.

B. Recall Phase

After learning process is accomplished, the robot will be
capable of recognizing and predicting concept (i.e. effect)
of novel demonstrations without the external information.
For this purpose, HMM prototypes in the LTM are used.
First, the likelihood of the perceived motion sequence against
HMM prototypes is obtained through forward algorithm. Next,
the perceived motion is recognized as one of the learned
concepts by selecting the concept associated with the most
probable prototype. In addition to recognition and prediction
of concepts, the robot can use the acquired knowledge to
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Fig. 3. Schematic Diagram of the concept learning algorithm.

reproduce the concepts. To this end, the robot employs the
HMM prototypes of each concept to generate generalized
motion patterns which can be transformed into motor signals,
using the robot’s inverse models.

IV. EXPERIMENTAL STUDIES

To evaluate the proposed algorithm for imitation learning
of relational concepts, we set up an experiment. There are
three agents in this experiment: A robot, a teacher, and a
third human agent. The robot is a humanoid robot, namely
the Nao academic robot. Demonstrations are provided for
the robot by kinesthetic teaching. It means that the teacher
grabs the robot’s hand and performs an action, e.g. strikes
at the third agent. Next, the third agent shows an emotional
response to the the teacher’s action, e.g. gets angry. The robot
perceives its arm joint variables during performing the action
and also recognize the emotional response of the third agent
after action execution. So, the robot can detect functional
similarities between different demonstrations based on the
sameness of their emotional effects. For example, whether the
teacher strikes the third agent from right or left, emotional
response of the third agent will be the angry facial expression.
All the concepts accompanied by their actions and emotional



responses are summarized in Table I. In all the concepts,
feedback of the third agent is identified by his facial expression
except for the Love concept. For this concept, the response is
to stimulate the tactile sensor on the Nao’s head by caressing.

For facial expression detection in this experiment, the simple
algorithm of “Eigenfaces” [14] is employed after cropping the
face image, using the algorithm in [15].

A. Results

We employed our proposed algorithm to learn the concept
of demonstrated actions. Total number of demonstrations in
this experiment was 135, i.e., 15 demonstrations for each
action. Each demonstration was perceived by the robot’s
kinesthetic sensory system during an action execution. As a
result, perceptions were 4D signals made up of roll and pitch
angles of the elbow and shoulder joints in the robot’s right
arm. Finally, the perceived signals incrementally entered to
the learning algorithm. In the concept learning algorithm, we
chose Kcutoff = 0.5, Numth = 3 , and the number of states
for HMMs was set to 10. Minimum number of elements to
form a new cluster (HMM prototype) was set based on the
following rule. There should be at least one prototype and one
exemplar or three exemplars in a candidate cluster to make a
new prototype. We used k-fold cross validation with k = 5 to
evaluate the performance of our algorithm for abstraction and
recognition of the concepts. So, the experiment was repeated
five times with different combinations of demonstrations for
training and test.

Results of the experiments are summarized as follows. To
show the progress of recognition accuracy during learning, a
scoring mechanism is used. It means that whenever a demon-
stration is perceived, first it is classified by the previously
learned concepts before entering to the learning algorithm.
If the perception sequence is classified correctly, a positive
score (+1) is issued, else a negative score (-1) is recorded. The
scores (average of five experiments) recorded over the learning
process on the training data is illustrated in Fig. 4. Note that
due to the discrete nature of the scores, the result in the figure
is smoothed with a window length of 10 to clearly reflect the
expected behavior. It can be observed that the robot recognizes
concept of all the new perception sequences correctly after
training by a number of demonstrations.

Number of HMM prototypes produced at the end of the
learning process of each experiment is listed in Table II. In
most cases, the algorithm finds the same number of HMM
prototypes as the number of actions which represent perceptual
variants of a concept. In sum, however, there are sometimes
one or two prototypes more than what is expected. For
example, in the fifth experiment, two prototypes emerge for
the concept of Unhappiness, but there is one action associated
to this concept according to Table I. This outcome is because
of the fact that some of the teacher’s demonstrations are more
similar to each other than the others, and so they are grouped
into the same cluster during the learning process. We also
illustrate the proto-symbol space of HMMs [6] for the fifth
experiment in Fig. 5. This space is constructed based on the

Fig. 4. Recorded scores over demonstrations.

distances between all pairs of HMM prototypes, using classical
multidimensional scaling method [16]. In Fig. 5, the first three
principal coordinates of multidimensional scaling are used to
visualize dissimilarity of HMMs in the proto-symbol space.

Fig. 5. Proto-symbol space of HMMs in the LTM for the fifth experiment.

To summarize performance of our proposed method, recog-
nition accuracy of the algorithm for classifying the concepts
in the test data is provided in Table III. This table also shows
some statistics about the number of generated exemplars and
prototypes in the WM and the LTM. Finally, samples of
reproduced actions by the Nao academic robot accompanied
by the third agent’s emotional responses are demonstrated in
Fig. 6.

V. CONCLUSION

In this study, we introduced a model for conceptual im-
itation. The main contribution was to devise an incremen-
tal and gradual learning algorithm for autonomous learning
and acquisition of relational concepts from spatio-temporal
demonstrations based on their functional characteristics. Func-
tional similarity between demonstrations was identified by
recognizing the effects of executed actions. HMMs were
used to abstract spatio-temporal demonstrations into stochastic



TABLE I
ALL THE CONCEPTS ACCOMPANIED BY THEIR ACTIONS AND RESPONSES

# Concept The Third Agent’s Response Action 1 Action 2 Action 3
1 Anger Angry Face Striking from Right Strike from Left -
2 Unhappiness Unhappy Face Hitting the Head Hitting the Chest -
3 Happiness Happy Face Throwing Fist Up and Down - -
4 Love Caressing the Robot’s Tactile Sensor Sketching Heart Sign Air Kiss Caressing the Face
5 Disgust Disgusted Face Cut-Through Gesture - -

TABLE II
NUMBER OF HMM PROTOTYPES GENERATED FOR EACH CONCEPT

Experiment
no.

Anger Unhappiness Happiness Love Disgust Sum

1 2 2 1 3 2 10
2 2 2 1 3 1 9
3 2 2 2 3 2 11
4 2 2 2 3 2 11
5 2 2 2 3 1 10

TABLE III
STATISTICAL INFORMATION FOR THE EXPERIMENTS WITH 5-FOLD CROSS

VALIDATION

Accuracy Size of WM Size of LTM
Mean % Std % Mean Std Mean Std
100.00 0.00 18.00 5.92 10.20 0.84

Air
Kiss Caressing Sketching

Heart
Cut-

Throat

Fist
Up &
Down

Hitting
the Head

Hitting
the Chest

Striking
from Right

Striking
from Left

Fig. 6. Samples of reproduced actions by the Nao academic robot.

perceptual prototypes and exemplars. Consequently, relational
concepts formed as a collection of irregularly scattered HMMs
unified based on their functional effects. This abstraction leads
to efficient memory management, generalization of acquired
information, ease of knowledge transfer, and flexibility of
choice between different alternatives. Finally, we evaluated
the algorithm in an experimental scenario, namely conceptual
hand gesture imitation learning by identifying their emotional
effects. The experiments conducted on the Nao academic robot
showed the successful results of our model for learning and ac-
quisition of all the concepts and recognition and regeneration

of their associated actions. As a results, the robot transforms
to an effective agent which is capable of predicting effects
(concepts) of novel demonstrations and also realizing theses
effects by execution of appropriate actions.
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