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Abstract

Many visual recognition tasks involve modeling vari-
ables which are structurally related. Hidden conditional
random fields (HCRFs) are a powerful class of models
for encoding structure in weakly supervised training exam-
ples. This paper presents HCRF-Boost, a novel and general
framework for learning HCRFs in functional space. An al-
gorithm is proposed to learn the potential functions of an
HCRF as a combination of abstract nonlinear feature func-
tions, expressed by regression models. Consequently, the
resulting latent structured model is not restricted to tradi-
tional log-linear potential functions or any explicit param-
eterization. Further, functional optimization helps to avoid
direct interactions with the possibly large parameter space
of nonlinear models and improves efficiency. As a result, a
complex and flexible ensemble method is achieved for struc-
tured prediction which can be successfully used in a variety
of applications. We validate the effectiveness of this method
on tasks such as group activity recognition, human action
recognition, and multi-instance learning of video events.

1. Introduction

Challenging structured vision problems necessitate the
use of high-capacity models. Examples include problems
such as modeling group activities or temporal dynamics in
human action recognition and internet video analysis. Re-
cently, visual recognition has made great strides using deep
models. Deep learning has been successfully applied to im-
age classification [18, 29] and object detection [12]. This
success arises from large-scale training of highly non-linear
functions which can induce complex models and learn pow-
erful abstract feature representations. However, learning
non-linear functions for structured vision problems remains
an open challenge. In this paper, we present a general
method for learning non-linear representations for struc-
tured models.

Our method works within a graphical model framework,
building an HCRF to model structure, as depicted in Fig. 1.
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Figure 1. The proposed method learns non-linear potential func-
tions in a latent structured model. An example model for group
activity is shown. Potential functions relate input image regions
to variables such as body pose or action/activity. Each potential
function is learned as a combination of non-linear models leading
to a high-capacity model. The colored ribbon-like lines visualize
the decision boundaries obtained by nonlinear potential functions.

Recent efforts in this vein [32, 3, 28] have attempted to de-
sign unified deep structured models by equipping Markov
random fields (MRFs) with the representational power of
convolutional neural networks (CNNs). These methods
jointly train an MRF and a CNN by maximizing likelihood
via back-propagation and stochastic gradient descent. How-
ever, all these methods are defined for fully observed output
variables and cannot incorporate or infer dependencies on
unlabeled variables in the case of weak supervision. Full
annotation of all output variables in MRFs is very costly for
many visual recognition tasks, and hence many variables
remain latent, unobserved, in training.

The standard learning algorithms for latent structured
models (e.g. latent SVM [9] or HCRF [26]) are restricted
to simple log-linear models, where the potential functions
are parameterized by linear combination of the input fea-
tures. Thus, they lack the non-linearity and feature abstrac-
tion power of deep models. In this work, we alleviate this
problem by proposing a general framework to learn latent
structured models with arbitrary potential functions in func-
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tional space.
We propose an algorithm based on functional gradient

ascent (i.e., gradient boosting). By using this functional ap-
proach, training a latent structured model is decoupled from
explicit representation of feature interactions in the poten-
tially large parameter space of the potential functions. This
provides scalability and improves efficiency [7]. This de-
coupling helps to define potential functions as a combina-
tion of new abstract features encoded by nonlinear regres-
sion models such as regression trees, kernel support vector
machines, or deep neural networks. As a result, a highly
complex model can be achieved with an efficient learning
algorithm. In addition, because of the ensemble effect of
combining numerous base models, the proposed method is
less prone to overfitting.

2. Related Work
In this section, we review related work within learning

algorithms for structured prediction and their use in com-
puter vision.

Learning algorithms for structured prediction: Con-
ditional random fields (CRFs) are among the primary tools
for structured visual recognition. Nonlinear variants of
CRFs include kernel conditional random fields [19], and
CRFs with deep neural network features [8]. Dietterich et
al. [7] and Chen et al. [4] proposed a boosting framework
to train CRFs with abstract features represented by regres-
sion trees. Jancsary et al. [16] introduced regression tree
fields, a Gaussian CRF model parameterized by regression
trees. Tompson et al. [32], Chen et al. [3], Schwing and
Urtasun [28] proposed methods to combine convolutional
neural networks with CRF-based graphical models for deep
structured prediction. Deng et al. [6] proposed a deep neu-
ral network with layers which mimic message-passing steps
in probabilistic graphical models.

Hidden conditional random fields [26] learn CRFs with
latent variables by maximizing the likelihood function
marginalized over the hidden variables via gradient ascent.
Max-margin variants of HCRF (a.k.a. latent SVM) [9, 44,
38] use alternating minimization strategies. Schwing et
al. [27] proposed a general structured loss minimization
framework for structured prediction with latent variables.
All these algorithms are used for learning log-linear mod-
els, which limits their ability to model complex prediction
tasks.

Nonlinear extensions of these algorithms have been pro-
posed based on predefined kernels, e.g. kernelized latent
SVM [41], kernels on CRFs [15], or non-linear feature
encoding techniques [34]. However, the kernelized la-
tent SVM methods have high computational complexity
and lack efficient inference algorithms, resorting to enu-
meration over (single) latent variables. The CRF kernel
method uses log-linear models trained similar to the stan-

dard HCRF [26].
In contrast, our work presents a general framework for

learning latent structured models, which trains HCRFs with
arbitrary potential functions represented by an ensemble of
nonlinear base models. Thus, it can represent richer depen-
dencies between the variables, be integrated with a variety
of base models, and provide efficient learning and inference
algorithms; empirically we show these can deliver superior
recognition performance.
Structured prediction for group activity: Structured pre-
diction has been extensively used in a variety of computer
vision applications. A series of recent papers has focused on
the problem of group activity recognition, inferring an ac-
tivity that is performed by a set of people in a scene. Choi
et al. [5], Lan et al. [21], and Khamis et al. [17] devised
models for spatial and temporal relations between the indi-
viduals involved in a putative interaction. Lan et al. [21]
proposed latent CRF models with optimized graph struc-
tures for joint action-activity recognition. Amer et al. [1]
proposed a hierarchical random field to jointly model tem-
poral and frame-wise relations of video features describing
an activity in a hierarchy of mid-level video representations.
Individual human action recognition: A variety of fea-
ture descriptors has been designed to extract discrimina-
tive spatio-temporal information from depth sequences. For
example, Yang et al. [43] proposed new HOG descriptors
built on depth motion maps. Wang et al. [37] trained an ac-
tionlet ensemble model based on novel local skeleton fea-
tures to represent and recognize human actions. Xia and
Aggarwal [39] introduced depth cuboid similarity features
to make codewords for depth video recognition. Yang and
Tian [42] proposed super normal vector (SNV) to describe
a depth sequence with a codebook of polynormals obtained
by clustering surface normals in the sequence. We perform
empirical evaluation on action recognition from depth data,
showing the efficacy of our learning approach. Similar to
some previous works in action/gesture recognition, we use
graphical models to capture the temporal dynamics and mo-
tion patterns of action [26, 22, 13].
Unconstrained internet video analysis: Structural models
have been also successfully used for unconstrained internet
video analysis. Methods to capture the temporal structure
of high-level events need to be robust to the presence of ir-
relevant frames. Successful models include Tian et al. [31]
and Niebles et al. [23], who extended latent variable models
in the temporal domain. Vahdat et al. [33] composed a test
video with a set of kernel matches to training videos. Tang
et al. [30] effectively combined informative subsets of fea-
tures extracted from videos to improve event detection. Pir-
siavash and Ramanan [25] developed stochastic grammars
for understanding structured events. Xu et al. [40] proposed
a feature fusion method based on utilizing related exemplars
for event detection. Lai et al. [20] applied multi-instance



learning to video event detection by representing a video as
multi-granular temporal video segments.

3. Proposed Method: HCRF-Boost

We propose a general framework for learning non-linear
latent structured models. A high-level overview of our pro-
posed method is as follows. We need to learn potential func-
tions for a structured model over inputs, latent variables,
and outputs. These potential functions control compatibili-
ties between various settings of the variables – e.g. the re-
lationships between image observations and their class la-
bels. In order to model challenging problems, complex non-
linear relationships between these variables are needed.

Figure 2 shows our proposed HCRF-Boost model. The
potential functions are defined as a combination of multiple
nonlinear functions, obtained stage by stage. To find these
functions we use functional gradient ascent (i.e. gradient
boosting). Gradient boosting is the functional analog of the
standard gradient ascent. At each step, a functional gradient
is found by taking the derivatives of the objective function
(likelihood function in our case) directly w.r.t the potential
functions (instead of the parameters). So, at each step a new
function gt is derived, where the potential function should
move in that functional direction. In this paper, we show
how to take these derivatives efficiently and approximate
the functional gradients with nonlinear fitting functions. In
the following sections the preliminaries and details of the
proposed method are explained. A summary of the resulting
algorithm is given in Alg. 1.
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Figure 2. Latent structured prediction with our proposed HCRF-
Boost model. Note that there exist potentials on all edges. But, the
potentials between the hidden and output variables are not shown
in this graph for clarity of illustration.

3.1. Preliminaries

Due to space limitations, we provide very brief sum-
maries of gradient boosting [10] and HCRFs [26] below.
Please see the corresponding references for more details.

Gradient Boosting: Gradient boosting learns a classifier
F (x) =

∑
t βtft(x) by optimizing an objective function

L(y, F (x)) in a functional space by performing gradient as-
cent. The optimization is approximated by a greedy stage-
wise optimization of the form

(βt, ft) = argmin
β,f

N∑
n=1

L(yn, Ft−1(xn) + β f(xn)). (1)

using a training set {(x1, y1), · · · , (xN , yN )}. To solve this
problem, first the so-called pseudo-residuals are computed
for each training instance as

f̂(xn) =
∂L(yn, F (xn))

∂F (xn)
|F (x)=Ft−1(x) (2)

After computing the pseudo-residuals, a new base classifier
ft(x) is trained by fitting a regression model to the training
set {(xn, f̂(xn))}n, i.e., ft : xn → f̂(xn). Given this
function fixed, the multiplier βt is found simply by doing a
line search. It has been shown that since a whole model is
added at each iteration of gradient boosting, a big step can
be taken to maximize the objective function [7].
Hidden Conditional Random Fields: A hidden condi-
tional random field (HCRF) is defined on a 3-tuple (X ∈
X ,h ⊂ H, Y ∈ Y), where h is the set of latent variables,
which are not observed in the training data. Given this, the
posterior probability distribution is obtained by

P (Y |X) =
∑
h

P (Y,h|X) =

∑
h exp (F (X, Y,h))∑

Y ′,h exp (F (X, Y ′,h))
,

(3)
where the whole graph potential function factorizes as

F (X, Y,h) =
∑
i

φi(Xi, Yi,hi). (4)

In the standard HCRF model proposed by [26], the potential
functions are linearly parameterized as

φi(Xi, Yi,hi) = γi(Xi, Yi,hi)θi. (5)

and parameters are learned using maximum a posteriori es-
timation.

In this paper, we alleviate the limitation of parameteriz-
ing the HCRFs and learn the potential functions in a func-
tional space, using a boosting approach. As a result, highly
non-linear and powerful models can be achieved.

3.2. HCRF-Boost: Gradient Boosting of HCRFs

In this work, we use gradient boosting for training HCRF
models. For this purpose, we maximize the likelihood func-
tion in (3) directly with respect to the clique potential func-
tions. Consequently, each potential function is written as
the combination of a number of base potential functions:

φi(Xi, Yi,hi) =
∑
t

βt ψi,t(Xi, Yi,hi), (6)



where each base potential function is estimated in a stage-
wise manner by taking the derivatives of the log likeli-
hood function w.r.t. the potential functions (given the cur-
rent model estimation):

ψ̂i,t(Xi, Yi,hi) =
∂ logP (Y |X)

∂φi(Xi, Yi,hi)
|f=ft−1

. (7)

We call this the pseudo-residual potential function. By
plugging into the likelihood function of (3) and using the
relations in [7], we get the following functional gradients at
a given point (Xn, Y n):

ψ̂i,t(X
n
i , Yi,hi) =

∂ log
∑

h exp (f(Xn, Y n,h))

∂φi(Xn
i , Yi,hi)

−
∂ log

∑
Y ′,h exp (f(Xn, Y ′,h))

∂φi(Xn
i , Yi,hi)

=P (hi|Xn, Y n)1(Yi = Y ni )− P (hi, Yi|Xn)

∀ i, Yi,hi.
(8)

Given the finite training set Dtr = {(Xn, Y n)}Nn=1

these are point-wise functional gradients, which are only
defined at the training data points [10]. However, they pro-
vide the functional gradient training examples D(Yi,hi)

i,t ={(
(Xn, Y n), ψ̂i,t(X

n
i , Yi,hi)

)}
n

, which can be fitted by
a regression model in order to make smooth approximate
pseudo-residual potential functions:

ψi,t(Xi, Yi,hi) =

argmin
ψi

∑
n

(
ψi(X

n
i , Yi,hi)− ψ̂i,t(Xn

i , Yi,hi)
)2

∀ i, Yi,hi.

(9)

This fitting is done by learning the parameters of a regres-
sion model for each possible value of the output and hidden
variables, i.e.,

ψi,t(Xi, Yi,hi) = g(Xi;θ
(Yi,hi)
i,t ),

θ
(Yi,hi)
i,t = argmin

θ

∑
n

(
g(Xn

i ;θ)− ψ̂i,t(Xn
i , Yi,hi)

)2
∀ i, Yi,hi.

(10)

Hence, in the most general case, the number of trained mod-
els can grow exponentially with the number of variables in
the largest clique. However, in practice, where common
HCRF models are used, this procedure is reduced to training
a few models (see next section). Finally, given the resulting
functions, the potential function at the current iteration is
updated as

φi(Xi, Yi,hi)← φi(Xi, Yi,hi) + βt ψi,t(Xi, Yi,hi),
(11)

where the the step-length parameter βt can be found by op-
timizing the likelihood function with a simple line search1.

Algorithm 1 HCRF-Boost Algorithm
1: Input: Training data {(Xn, Y n)}Nn=1.
2: Initialize the potential functions φi(Xi, Yi,hi) = 0.
3: repeat
4: for each potential function φi do
5: Compute the pseudo-residual potentials ψ̂i,t ac-

cording to (8) for all training examples.
6: Train new base potential functions ψi,t according

to (10) by fitting the input training examples to the
pseudo-residual potentials.

7: Update the potential function: φi ← φi + βt ψi,t.
8: end for
9: until converged or maximum number of iterations

3.3. HCRF-Boost for Unary and Pairwise Potentials

In the previous section, we described the HCRF-Boost
algorithm for general HCRF models. In this section, a more
detailed explanation of the algorithm is provided for HCRF
models with unary and pairwise potentials, which are com-
monly used in visual recognition [26].
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Figure 3. A hidden conditional random field with unary and pair-
wise potential functions.

A graphical representation of this model is shown in Fig-
ure 3. This graph is composed of the input observations
X = {x0,x1, · · · ,xm}, the output label Y , and the hid-
den labels h = {h1, · · · , hm}. The input observations are
feature descriptors extracted from an image or video, where
x0 is a global feature descriptor which represents the whole
input, while xi (i 6= 0) are local observations. Each lo-
cal observation xi is connected to its hidden label hi. The
connections between the hidden labels is represented by a
graph G = (V, E), where the edges (i, j) ∈ E denote the
links between the hidden labels hi and hj . Finally, all hid-
den labels are linked to the output label Y . The goal is to
predict the output label Y , given the input observations X

1However, there is both theoretical and empirical evidence that this pa-
rameter can be safely set to a small constant value (e.g., 0.1) [2]. In all our
experiments, we follow this rule.



and the structural constraints of the induced graph, by mod-
eling the posterior probability P (Y |X).

Given this model, the whole graph potential function
takes the following form:

f(X, Y,h) = φ0(x0, Y ) +

m∑
i=1

φ1(xi, hi)

+

m∑
i=1

φ2(Y, hi) +
∑

(i,j)∈E

φ3(Y, hi, hj).

(12)

The learning process is to find the potential functions
φ0, φ1, φ2, φ3 which maximize the likelihood function, by
taking the functional gradients. Following the formula de-
rived in (6), the pseudo-residuals of each potential function
for a given data point (Xn, Y n) at iteration t are obtained
by2:

ψ̂0,t(x
n
0 , Y ) = 1(Y = Y n)− P (Y |Xn) (13)

ψ̂1,t(x
n
i , hi) = P (hi|Xn, Y n)− P (hi|Xn) (14)

ψ̂2,t(Y, hi) = P (hi|Xn, Y n)1(Y = Y n)

− P (hi, Y |Xn) (15)

ψ̂3,t(Y, hi, hj) = P (hi, hj |Xn, Y n)1(Y = Y n)

− P (hi, hj , Y |Xn) (16)
∀ i ∈ V, (i, j) ∈ E , Y ∈ Y, hi ∈ H.

Note that all these probabilities are the marginal probabil-
ities which can be found by sum-product inference of the
CRFs. For the popular CRF models that we use in this pa-
per, such as tree-structured graphs or cardinality models,
these marginals can be inferred exactly in linear or linearith-
mic time.

Next, by solving the fitting problem of (10), it can be
shown that the smooth approximate functions are found as

ψ0,t(x0, Y = a) = g(x0,θ
(a)
0,t ) : {xn0 → ψ̂0,t(x

n
0 , a)}Dtr

∀ a ∈ Y (17)

ψ1,t(xi, hi = b) = g(xi,θ
(b)
1,t ) : {xni → ψ̂1,t(x

n
i , b)}Dtr,V

∀ b ∈ H (18)

ψ2,t(Y = a, hi = b) = mean {ψ̂2,t(a, b)}Dtr,V

∀ a ∈ Y, b ∈ H (19)

ψ3,t(Y = a, hi = b, hj = c) = mean {ψ̂3,t(a, b, c)}Dtr,E

∀ a ∈ Y, b ∈ H, c ∈ H. (20)

2Although the behind-the-scenes steps to derive the functional gradi-
ents are non-trivial, the results are intuitive. For example, (13) says that
if Y is observed in the training data (i.e., Y = Y n), P (Y |Xn) should
be equal to 1 to make the subgradients zero and maximize the likelihood.
Likewise, (14) says that the probability of the latent variables, with and
without Y being observed, should become equal. In fact, these functional
gradients are representing the errors but on a probability scale.

The first set of functions in (17) and (18) are trained by
a regression model. So, only |Y| + |H| functions should
be trained. The next functions in (19) and (20) are simply
obtained by taking the mean over all training examples. See
the supplementary material for the detailed analysis of the
computational complexity of the whole method.

3.4. Discussion

The fitting in (17) and (18) can be performed by train-
ing any regression model such as regression trees, kernel
support vector machines, or even deep neural networks3. In
practice training a support vector regression (SVR) model is
faster than trees (especially for large feature vectors). Thus,
in all our experiments we used SVR models. However, note
that tree models can help for feature selection as well.

Further, for all the visual recognition tasks in Section 4,
we use task-specific hand-crafted features. But, by using
convolutional neural networks (CNNs) for model fitting,
deep features can be also learned. In fact, employing CNNs
with our method leads to an extension of the recent algo-
rithms for learning deep structured models [28, 3]. These
algorithms maximize the likelihood function P (Y |X,w) =
exp (f(X,Y,w))

Z(X,w) w.r.t. the parameters w via gradient ascent
and backpropagation, where f(X, Y,w) is a CNN param-
eterized by w. However, HCRF-Boost with CNNs extends
these algorithms by (1) incorporating the structured hidden
variables and (2) learning via functional gradient ascent (i.e.
gradient boosting).

In our implementation, we used stochastic gradient
boosting [11]. In this variation of gradient boosting, at each
step, a random subset of training data is selected for com-
puting the pseudo-residuals and fitting the base models. As
a result, gradient boosting is combined with bagging (sim-
ilar to random forest). Incorporating this randomization is
advantageous for both improving the accuracy and speeding
up the algorithm [11]. In all the experiments we subsampled
90% of data (without replacement) at each iteration.

4. Experiments

We provide empirical results on three different tasks:
group activity recognition, human action recognition, and
video event detection.

4.1. Spatial Structured Models: Group Activity
Recognition

In this section, our proposed HCRF-Boost algorithm is
used to train HCRFs which model spatial relations between
individuals doing actions in a scene to recognize high-level
group activities. Hence, the individual actions provide the

3Since the computed pseudo-residuals can be very small, it is recom-
mended to scale them to the range [0, 1] before doing regression.



context to infer the whole group activity. We run experi-
ments on two datasets: collective activity dataset [5] and
nursing home dataset [21]. Example HCRF models for this
task are shown in Figure 4. This model is composed of
nodes representing the people, actions, and the group activ-
ity. The hidden nodes are the individual actions which are
linked to each other with a tree-structured graph, obtained
by running maximum spanning tree.
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Figure 4. Group activity recognition with spatial structured mod-
els. (a) An example HCRF model from collective activity dataset.
(b) An example HCRF model from nursing home dataset.

4.1.1 Collective Activity Dataset

The Collective Activity Dataset [5] comprises 44 videos
(about 2500 video frames) of crossing, waiting, queuing,
walking, and talking. Our goal is to classify the collective
activity in each frame. Each person is represented by the
action context feature descriptor proposed in [21]. We fol-
low the same experimental settings as used in [21], i.e., the
same 1/3 of the video clips were selected for test and the
rest for training. As the latent models, we use the HCRF
shown in Figure 4(a) with 5 hidden labels. The result of our
method is shown in Table 1 and compared with the follow-
ing methods4: (1) SVM on global bag-of-words, (2) latent
SVM method in [21], and (3) HCRF (our own baseline).
We also visualize some examples of recognition with our
method in Figure 5.

Table 1. Comparison of classification accuracies of different al-
gorithms on collective activity dataset. Both multi-class accuracy
(MCA) and mean per-class accuracy (MPCA) are shown because
of class size imbalance.

Method MCA MPCA
Global bag-of-words with SVM [21] 70.9 68.6
Latent SVM with optimized graph [21] 79.7 78.4
HCRF 76.2 75.2
HCRF-Boost (our proposed method) 82.5 79.4

4These methods follow the standard multiclass classification evaluation
protocol in [5, 21], which is different from the binary classification in [1].

4.1.2 Nursing Home Dataset

In this section, we evaluate our method for activity recog-
nition in a nursing home. The dataset we use [21] images
scenes in which the individuals might be performing any of
five actions: walking, standing, sitting, bending, or falling.
However, the goal is to detect the whole scene activity, i.e.,
if any person is falling or not.

The dataset has 22 video clips (12 clips for training and
8 clips for test) with 2990 annotated frames, where about
one third of them are assigned the “fall” activity label. We
use the same feature descriptor as used in [21]. In short,
this feature vector is obtained by concatenating the score
of SVM classifiers trained for recognizing each of the five
actions on the training dataset. Similar to the previous sec-
tion, we use the HCRF model shown in Figure 4(b) with
five hidden labels. The results in terms of classification ac-
curacy and average precision are shown in Table 2. Again,
we compare our method with a global bag-of-words model,
latent SVM, and standard HCRF algorithm.

Table 2. Comparison of different algorithms on the nursing home
dataset in terms of average precision (AP), mean per-class accu-
racy (MPCA), and multi-class accuracy (MCA). Note that because
of the significant class size imbalance between the two classes,
MCA is not an informative metric in this task

Method AP MPCA MCA
Global bag-of-words [21] 43.3 52.4 48.0
Latent SVM [21] 48.8 67.4 71.5
HCRF 44.4 66.3 75.2
HCRF-Boost (ours) 49.6 73.0 75.4

4.2. Temporal Structured Models: Human Action
Recognition

In this section, we apply our method for human ac-
tion recognition with chain-structured HCRFs, capturing
the temporal dynamics of the action. A graphical model of
this task is illustrated in Figure 6. This HCRF consists of the
input nodes, representing temporal segments of a depth se-
quence, connected to the hidden-state nodes. There is also
a root potential function to globally model the interaction
between the whole action sequence and the action label.

We evaluate the proposed model on the MSRAction3D
dataset [22]. This dataset has 567 depth map sequences
of 20 different actions performed by 10 subjects. The ac-
tions are movements common in gaming such as “hand
catch”, “forward punch”, “draw tick”, “tennis swing”. As
the features, we use the super normal vector (SNV) descrip-
tors [42]. But, instead of the raw SNV features, we convert
them into SVM scores and make a discriminative feature
descriptor, as in Section 4.1.2.

The experiments were conducted by dividing each depth
sequence into eight equal temporal segments and using the



Figure 5. Examples of recognition with the proposed HCRF-Boost method. Each figure is annotated by the predicted collective activity.
Also each individual is annotated by a tuple, indicating the inferred hidden label and its probability. Since the hidden labels are not observed
during training, they have been represented symbolically by 1, 2, 3, 4, 5. However, interestingly, they have been learned to semantically
categorize the individual actions (i.e., 1: talk; 2: walk; 3: cross; 4: wait; 5:queue). For example, in the first figure from left, four people
are crossing the street while the two others are walking in the sidewalk. In the second figure, four people are waiting and one is crossing.
In the third figure, four people are queuing in the line and one person is walking to join the lineup. In the fourth and fifth figures, all the
individuals are walking and talking, respectively.

�� �� �� �� �� �� �� �	

Action 

Class



Figure 6. The HCRF model for human action recognition from a
depth sequence.

HCRF model of Figure 6 with 5 hidden states for each seg-
ment. To have a fair comparison we followed the same ex-
perimental protocol as [42, 37]. The results are shown in
Table 3 and compared with the state-of-the art methods for
depth-based action recognition. Note that the global model5

and HCRF algorithm are our own baselines.

Table 3. Comparison of classification accuracies of different algo-
rithms on MSRAction3D dataset.

Method Accuracy
Bag of 3D Points [22] 74.70%
Actionlet Ensemble [37] 88.20%
Depth Motion Maps [43] 88.73%
DSTIPv [39] 89.30%
Skeletal [35] 89.48%
Pose Set [36] 90.00%
Moving Pose [45] 91.70%
SNV [42] 93.09%
Our global model (using SNV) 92.73%
HCRF (using SNV) 91.64%
HCRF-Boost (using SNV) 94.18%

5Our global model is the same as the model proposed in [42] for SNV.
However, we could not get the same accuracy (92.73 vs 93.09) with our
duplication of their experiments.

4.3. Cardinality Models for Multi-Instance Learn-
ing: Multimedia Event Detection

Multiple instance learning (MIL) aims to recognize pat-
terns from weakly supervised data. Contrary to standard
supervised learning, where each training instance is la-
beled, in the MIL paradigm a bag of instances share a la-
bel, and the instance labels are hidden. Hajimirsadeghi et
al. [14, 15] introduced HCRF models for MIL by incorpo-
rating cardinality-based potential functions. These cardi-
nality potentials permit the modeling of the counts of inputs
that contribute to an overall label.
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Figure 7. A graphical representation of the cardinality model. The
instance labels are hidden variables.

A graphical representation of the cardinality model is
shown in Figure 7. Each instance and its label are mod-
eled by two nodes in a clique. The potential function of this
clique (φI ) specifies a classifier for an individual instance.
There is also an optional clique potential between the global
representation of the bag and the bag label (φB). Finally, a
third clique potential (φC) contains all instance labels and
the bag label. This clique is used to define what makes a
bag positive or negative. Varying this clique potential will
lead to different multi-instance assumptions. To this end,
two different cardinality-based functions are defined, one
for positive bags (C(+1)) and one for negative bags (C(−1)):

φC(Y,h) = C(Y )(
∑
i

hi). (21)



In general, C(+1) and C(−1) could be expressed by any car-
dinality function which can model MIL constraints. How-
ever, in our work we focus on the Normal cardinality model:

C(+1)(c) = −( c
m
− µ)2/2σ2, C(−1)(c) = −( c

m
)2/2σ2.

(22)

The parameter µ in this model controls the ratio of positive
labeled instances in a positive bag.

In this work, we use our proposed HCRF-Boost to train
these cardinality models. The experiments on popular MIL
benchmark datasets and comparison with some state-of-the-
art MIL methods are provided in the supplementary mate-
rial. In this section, we evaluate our method for event de-
tection on the challenging TRECVID MED11 dataset [24].

Recently, Lai et al. [20] proposed novel multi-instance
methods (single–g ∝SVM and multi–g ∝SVM) for video
event detection, by treating a video as a bag of temporal
video segments of different granularity (single–g ∝SVM
uses only single frames but multi–g ∝SVM uses both the
single frames and video segments). Hajimirsadeghi et
al. [15] followed a similar MIL approach to video event de-
tection by embedding the cardinality models into a powerful
kernel, “Cardinality Kernel.” We evaluate the performance
of our algorithm compared to these methods. In our frame-
work, each video is treated as a bag of ten temporal video
segments, where each segment is represented by pooling
the features inside it. As the cardinality potential, we use
the Normal model in (22) with µ = 1 and σ = 0.1 to em-
bed a soft and intuitive constraint on the number of positive
instances: the more relevant segments in a video, the higher
the probability of the event occurring.

Similar to the experiments in [20, 15], we use dense
SIFT features quantized into bag-of-words vectors for each
video segment6. The results are shown in Table (4). The
HCRF method (used to train the cardinality model) per-
forms poorly in this task because of using a linear feature
representation. Our method outperforms multi–g ∝SVM
(which is the best in [20]) by around 25%. It can be also ob-
served that HCRF-Boost is comparable with the Cardinality
Kernel method. Note that the Cardinality Kernel is special-
ized for MIL. It only induces nonlinearlity to bag classifi-
cation and still has log-linear models for instance classifica-
tion. Further, its computational complexity grows quadrat-
ically with the number of instances, and needs quadratic
space w.r.t. the number of bags. However, HCRF-Boost
is a general and flexible method, learns nonlinear potential
functions, and provides scalability and efficiency.

6We use VLFeat, as in [20, 15], with the same number of codewords
as [15] but with fewer codewords than [20] – 1500 for ours but 5000 in
[20]). Note that this is not the best setting for the SIFT features. For exam-
ple, if the codewords are increased to 20,000, the mean average precision
increases up to 13.4% by using only the global model. Also by combining
or fusing other sets of features, better results can be achieved (e.g. [30, 40]).

Table 4. Comparing our proposed HCRF-Boost with ∝SVM algo-
rithms in [20] and the Cardinality Kernel in on TRECVID MED11.
The best AP for each event is highlighted in bold.

Event
single–g
∝SVM

[20]

multi–g
∝SVM

[20]

Cardinal-
ity Kernel

[15]
HCRF

HCRF-
Boost

6 1.9 % 3.8 % 2.8 % 1.2 % 2.6 %
7 2.6 % 5.8 % 5.8 % 1.8 % 5.3 %
8 11.5 % 11.7 % 17.0 % 9.7 % 22.4 %
9 4.9 % 5.0 % 8.8 % 3.0 % 6.3 %
10 0.8 % 0.9 % 1.3 % 0.8 % 1.1 %
11 1.8 % 2.4 % 3.4 % 1.3 % 3.7 %
12 4.8 % 5.0 % 10.7 % 4.0 % 11.3 %
13 1.7 % 2.0 % 4.7 % 0.8 % 4.7 %
14 10.5 % 11.0 % 4.9 % 1.4 % 3.7 %
15 2.5 % 2.5 % 1.4 % 1.3 % 1.6 %
mAP 4.3 % 5.0 % 6.1 % 2.5 % 6.3 %

5. Conclusion
We presented a novel and general framework for learn-

ing latent structured models. This algorithm uses gradient
boosting to train a CRF with hidden variables in functional
space. The functional approach helps to learn the structured
model directly with respect to the potential functions with-
out direct interaction with the potentially high-dimensional
parameter space. By using this method, the potential func-
tions are learned as an ensemble of nonlinear feature func-
tions represented by regression models. This introduces
nonlinearity into the model, enhances its feature abstraction
and representational power, and finally reduces the chance
of overfitting (due to the ensemble effect). We evaluated
the performance of the proposed method on three challeng-
ing tasks: group activity recognition, human action recog-
nition, and multimedia video event detection. The results
showed that our nonlinear ensemble model leads to signif-
icant improvement of classification performance compared
to the log-linear structured models. Further, the proposed
method is very flexible and can be simply integrated with a
variety of off-the-shelf nonlinear fitting functions.
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