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Abstract

This paper presents a structured kernel learning approach to multi-instance classi-
fication, where the bags are modeled as hidden conditional random fields (hCRFs)
with cardinality potentials. A kernel, parameterized by the corresponding hCRF
cardinality model, is jointly trained with the max-margin classifier in a regularized
risk optimization problem. The integrated learning forms the instance-level label-
ing and the bag-level discriminative classification together, with a direct goal of
improved bag classification The proposed method is evaluated on standard multi-
instance learning data sets.

1 Introduction

Multiple instance learning (MIL) approaches are powerful because they can leverage a bag of in-
stances to make a decision. They can handle weakly labeled data and aggregate information from
a set of related instances to make a classification decision. However, squeezing the available utility
from a bag of instances requires two key components. First, modeling the varying relationship be-
tween instance-level labels and a bag label is crucial. Second, holistic information about an entire
bag should be captured. In this paper we propose a principled, unified framework for capturing
these two sources of information. We present a method for learning powerful kernels that operate
over graphical models describing bags and their counts of instance-level labels. These learned ker-
nels can adapt to a particular problem, determining the right combination of instance-level analysis,
aggregation, and bag-level representation appropriate for classification.

Multi-instance classification algorithms can be categorized into instance-level and bag-level methods
based on the space or level in which the discriminative information lies [19, 1]. In the instance-level
paradigm, an instance classifier is trained to classify positive and negative instances, and based on
the instance-level predictions a bag classifier is obtained. Thus in these methods, the mechanism
which determines how the instances contribute to bag prediction is important. This mechanism
is usually designed based on multi-instance assumptions. The standard assumption (i.e., a bag is
positive if at least one of the instances is positive) was proposed for the early applications of MIL.
However, this assumption discards information useful in many MIL applications. For example, in
image retrieval most top-ranked training images are truly relevant to the query, i.e., they are true
positives and not just additional irrelevant elements in a bag [20]. Stronger classifiers can be trained
by employing better assumptions that extract more information from a bag. Recently, generalized
assumptions have been studied, such as ratio-based assumptions [11, 20, 9, 24, 12], where the ratio
of positive instances in a bag determines the bag label. According to [12, 13, 11] encoding the
level of ambiguity of instance labels (e.g., the portion of positive instances in a bag) in the classifier
can significantly improve the accuracy of classification. However, instance-level methods lack the
ability to extract holistic information from the bag.

On the other hand, in the bag-level paradigm, a classifier is trained directly on bags by extracting
discriminative global information from the whole bag. For example, each bag is mapped to a single
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feature vector, which summarizes the information about a whole bag, and a standard single-instance
learner is used to classify the bags in the resulting vectorial embedding space. The bag-level ap-
proach can be more effective for bag classification [1]. By defining appropriate kernel, distance or
mapping functions, the bag-level methods extract unified bag metadata, which can improve classifi-
cation accuracy. Most bag-level methods find a summary of the bag without considering the instance
labels. This limits the ability of a method to discern and model contributions of individual instances
to classification.

The Cardinality Kernel proposed in [15] introduced a novel framework which has the advantages
of both classes of methods: 1) encoding the level of ambiguity of instance labels with ratio-based
assumptions and 2) defining a kernel which can extract discriminative bag-level information from
data. In this framework, first a bag is modeled as a hidden conditional random field (hCRF), namely
Cardinality Model [12, 14], to capture the count-based relations between hidden instance labels.
The parameters of the Cardinality model can be learned by either likelihood maximization or max-
margin optimization. Next, a kernel is defined on bags based on the trained Cardinality Model for
the purpose of bag classification. The proposed kernel can give a holistic discriminative model of
weakly annotated graph-structured data in an embedded space of even infinite dimensionality, and
simply be incorporated in a variety of machine learning techniques by using the kernel trick.

This paper extends our previous works on Cardinality Models [12, 14] and Cardinality Kernels [15],
and proposes a unified algorithm for joint kernel learning and classifier training. The parameters
of the Cardinality Kernel (which are indeed the hCRF parameters) are learned inside a regularized
SVM optimization, and consequently the kernel can faithfully adapt to the target multi-instance
classification task.

This paper is organized as follows. Section 2 reviews related work. Section 3 provides some prelim-
inaries to introduce the topic, notation, and base model. In Section 4 our framework is described,
including the proposed kernel and the kernel learning algorithm. The algorithms are also analyzed in
terms of computational complexity. Section 5 shows the results of evaluating the proposed methods
and summarizes the experimental comparisons to the state-of-the-art MIC algorithms. We conclude
in Section 6.

2 Related Work

Gärtner et al. [10] defined a class of kernels for multi-instance classification. In these kernels all
instances of a bag contribute to bag classification equally, although they are not equally important in
practice. To alleviate this problem, Kwok and Cheung [16] proposed marginalized multiple instance
kernels. These kernels specify the importance of an instance pair of two bags according to the con-
sistency of their probabilistic instance labels. In our work, we also use the idea of marginalizing
joint kernels, but we propose a unified framework to combine instance label inference and bag clas-
sification within an adaptive probabilistic graph-structured kernel. MIGraph and miGraph [28] are
two other kernel-based MIL methods. Both algorithms work by mapping a bag into an undirected
graph and designing a kernel between graph pairs. Bag classification is fulfilled by plugging the
kernels in an SVM. The PPMM kernel [26] is an example of adaptive kernels for multi-instance
classification. Each bag is represented by aggregate posteriors of instances in a mixture model,
which summarize the frequencies of patterns in the bag. Given this, a parameterized kernel is de-
fined, where the parameter controls the importance of major and minor patterns in the application
domain. This parameter is learned by maximizing the alignment between the proposed kernel and
the ideal kernel in an exhaustive search procedure. Thus, in this method the objective function for
learning the kernel is different from the objective function for classification, while in our proposed
framework the kernel learning is integrated in a single, unified optimization problem.

Probabilistic graphical models are powerful tools for multi-instance classification, given their ability
to model the structured relationships between the instances in a bag. Deselaers and Ferrari [7] pro-
posed MI-CRF. In this method, the bags are modelled as nodes in a CRF, where each node can take
one of the instances of the bag as its state. Bags are jointly trained and classified in this model. The
model uses instance classifiers as unary terms and dissimilarity measures between witness instances
as pairwise terms. Warrell and Torr [27] proposed another CRF-based method. This method pro-
vides a structured bag model, by constructing a CRF over the instances, instance labels, and the bag
label. In this CRF, hard and soft MIL constraints are incorporated in the model by defining energy
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functions between the labels. Inference of the proposed CRF is performed approximately by dual
decomposition, and the models are trained by deterministic annealing.

Tarlow et al. [24] proposed a model to approach MIL by CRFs with cardinality potentials defined on
instance labels. Learning is performed by regularized likelihood maximization using gradient ascent
algorithms proposed for hidden CRFs. Hajimirsadeghi et al. [12] proposed a framework to model
different multiple instance assumptions by parameterizing cardinality potentials in a CRF. Learning
is formulated as a discriminative max-margin optimization problem.

In this paper, we build on this line of graphical model-based multi-instance classification. We learn
an adaptive kernel on hCRFs modeling bags (c.f. kernel conditional random fields [17]). This allows
the direct incorporation of powerful kernels that can model not only the relations between instances
and instance labels, but also the level of ambiguity of instance labels and a task-specific bag-level
kernel classifier.

3 Preliminaries

In this section, we define our MIL notation and provide a description of the cardinality potential
model for multi-instance classification.

3.1 Multi-Instance Learning Notation

Let X = {x1,x2, · · · ,xm} denote a bag with m instances and a binary bag label Y ∈ {−1,+1}.
Each instance is represented by a fixed-size feature vector xi = [xi1, · · · , xiD] ∈ RD. The instances
also have unknown binary labels yi ∈ {0, 1} (where 0 represents a negative label). Given this,
the collective binary instance labels of a bag are denoted by y = {y1, · · · , ym}. The whole set
of training data is represented by {(X1, Y1) , · · · , (XN , yN )}. Finally, the goal is to learn a bag
classification function f(X), which specifies the score of X being positive.

3.2 Cardinality Potential Model for Multi-Instance Learning

A cardinality potential is defined in terms of counts of variables which take some particular values.
For example, with binary variables, it is defined in terms of the number of positive and negative
labeled variables. Given a set of binary random variables y = {y1, y2, · · · , ym} (yi ∈ {0, 1}), the
standard cardinality potential model is described by the joint probability

P (y) =
C(
∑
i yi)

∏
i exp (ϕiyi)∑

y C(
∑
i yi)

∏
i exp (ϕiyi)

, (1)

which consists of one cardinality potentialC(·) over all the variables and unary potentials exp (ϕiyi)
on each single variable. Tarlow et al. [24] proposed an exact algorithm to perform sum-product
inference and compute all marginal probabilities of this model in O

(
m log2m

)
time.

Multiple instance assumptions are usually defined on the counts of positive labeled instances in
a bag. For example, the standard assumption states that at least one instance in a positive bag is
positive. So, it is intuitive that the MIL constraints can be modeled by a cardinality potential over
the instance labels. Using the standard cardinality potential model as the core, a conditional random
field (CRF) is constructed to model the likelihood of a bag X with the bag label Y and the instance
labels yi ∈ {0, 1}, which factorizes as [24]:

P (Y,y|X;θ) ∝ φC(Y,y)
∏
i

φIθ(xi, yi). (2)

A graphical representation of the model is shown in Figure 1. In our framework, we call this the
multi-instance cardinality potential model (MICPM). In this model, φC(Y,y) is a clique potential
over all the instance labels and the bag label. It is used to model assumptions and formulated as
φC(Y,y) = C(Y )(

∑
i yi). C(+1) and C(−1) are cardinality potentials for positive and negative bag

labels, and in general could be expressed by any cardinality function which models MIL constraints.
However, in this paper we only work with the Normal model in (3) and the Majority model in (4).

C(+1)(c) = exp
(
−(

c

m
− µ)2/2σ2

)
and C(−1)(c) = exp

(
−(

c

m
)2/2σ2

)
. (3)
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Figure 1: Graphical illustration of the proposed model for multiple instance learning. Potential
functions relate instances xi to labels yi. A clique relates all instance labels yi to the bag label Y .

C(+1)(c) = 1(
c

m
>= 0.5) and C(−1)(c) = 1(

c

m
< 0.5). (4)

The parameter µ in the Normal model controls the ratio of positive labeled instances in a bag.

φIθ(xi, yi) represents the potential between each instance and its label, and it is parameterized as:

φIθ(xi, yi) = exp (θtxi yi) (5)

Given (3) and (5), the joint probability of the CRF in (2) can be rewritten as

P (Y,y|X;θ) ∝ C(Y )(
∑
i

yi)
∏
i

exp (θtxi yi). (6)

Hence, the bag label likelihood alone is given by

P (Y |X;θ) =
∑
y

P (Y,y|X;θ) =
Z(Y )∑
Y ′ Z(Y ′)

, (7)

where Z(Y ) =
∑
y

(
C(Y )(

∑
i

yi)
∏
i

exp (θtxi yi)

)
(8)

is the partition function of a standard cardinality potential model, which can be computed by the
proposed sum-product inference algorithm of [24] in O

(
m log2m

)
time.

Finally, the maximum a posteriori estimation of the learning parameters given the parameter prior
distributions is obtained by maximizing the following log likelihood function:

L(θ) =
∑
i

logP (Y |X;θ)− λ r(θ). (9)

This is a maximum likelihood optimization of a hidden conditional random field (hCRF) [22] with
parameter regularization (r(θ) = ‖θ‖n for Ln-norm regularization). Gradient ascent is used to find
the optimal parameters, where the gradients are obtained efficiently in terms of marginal probabili-
ties.

4 Cardinality Potential Kernel for Multi-Instance Classification

In this section, we explain our proposed framework for multi-instance classification. At a high level,
we define a kernel between multi-instance cardinality potential models of bags. We start by deriving
a kernel based on marginalization over instance labels, starting from an existing probabilistic model
for bags (Sec. 4.1). We then show how to jointly learn bag probabilistic model parameters and
classifier parameters (Sec. 4.2). This joint learning algorithm sets instance-level labeling parameters
and bag kernel parameters together, with a direct goal of improved classification performance. In
experiments, we show that this joint learning can improve classification results.
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4.1 Multi-Instance Cardinality Potential Kernel SVM

Given two bags Xp and Xq or their equivalent MICPMs described in Section 3.2, the joint kernel is
defined between the combined variables zp = (Xp,yp) and zq = (Xq,yq):

kz(zp, zq) =

mp∑
i=1

mq∑
j=1

kx(xpi,xqj)ky(ypi, yqj), (10)

where kx(·, ·) is a standard kernel between single instances, and ky(·, ·) is a kernel defined on dis-
crete instance labels. By marginalizing the joint kernel w.r.t. the hidden instance labels and with
independence assumption between the bags, a kernel is defined on the bags as:

k̃(Xp,Xq) =
∑
yp,yq

P (yp|Xp)P (yq|Xq)kz(zp, zq). (11)

After plugging (10) into (11), it can be shown that the marginalized joint kernel is reduced to
mp∑
i=1

mq∑
j=1

∑
yp,yq

(
kx(xpi,xqj)ky(ypi, yqj)P (ypi|Xp)P (yqj |Xq)

)
. (12)

In our proposed framework, P (ypi|Xp) and P (yqj |Xq) are obtained by

P (yi|X) =
∑
Y

P (yi|Y,X)P (Y |X), (13)

where P (yi|Y,X) are the marginal probabilities of a standard cardinality potential model, which can
be computed efficiently in O(m log2m) time. Also P (Y |X) is the bag label likelihood introduced
in (7). In our proposed algorithm first the parameters θ of the MICP model are learned using the
likelihood maximization approach explained in Section 3.2. Next, the marginals are inferred and
plugged into the kernel function of (12).

In general, any kernel for discrete spaces can be used as ky . However, throughout this paper ky is
assumed to be

ky(ypi, yqj) = 1(ypi = yqj). (14)
Using this, the kernel in (12) is simplified as:

k̃(Xp,Xq) =

mp∑
i=1

mq∑
j=1

kx(xpi,xqj)P (ypi = 1|Xp)P (yqj = 1|Xq)

+

mp∑
i=1

mq∑
j=1

kx(xpi,xqj)P (ypi = 0|Xp)P (yqj = 0|Xq).

(15)

Finally, to avoid bias towards the bags with large numbers of instances, the kernel is normalized
as [10]:

k(Xp,Xq) =
k̃(Xp,Xq)√

k̃(Xp,Xp)
√
k̃(Xq,Xq)

. (16)

We call the resulting kernel the multi-instance cardinality potential (MICP) kernel. By using this
kernel in the standard kernel SVM, we propose the multi-instance cardinality potential kernel SVM
(MICPK-SVM) method for multi-instance classification.

4.2 Multi-Instance Cardinality Potential Kernel Learning

In this section, we show how to learn the parameters of the MICP model θ in the proposed MICP
kernel, integrated in a kernel SVM classifier. As a result, instead of generative pre-learning of a
kernel by likelihood maximization of the MICP model, the MICP kernel is specifically trained for
the target classification task. Given a parameterized kernel kθ(Xp,Xq) = Φθ(Xp).Φθ(Xq), the
goal is to learn a bag classification function f(X) = wtΦθ(X) + b to predict the binary bag label
Y = sign (f(X)) ∈ {−1,+1}. To this end, we follow the generalized multiple kernel learning
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framework [25] to optimize the SVM primal objective function w.r.t. the classifier parameters w
and b, and kernel parameters θ. First the SVM primal is rewritten as a nested optimization

min
θ
T (θ),

where T (θ) = min
w,b

1

2
‖w‖22 + C

∑
n

max (0, 1− Ynf(Xn)) + r(θ).
(17)

In the outer optimization the kernel parameters θ are optimized, and in the inner optimization the
SVM learning weights are estimated. To solve this problem in a gradient descent approach, it is
required to calculate ∇θT . Using the duality theorem, it is shown that ∇θT = ∇θW [25], where
W is the dual formulation of T :

W (θ) = max
α

1tα− 1

2
αtYKθYα + r(θ),

subject to 1tYα = 0, 0 ≤ α ≤ C,
(18)

and α is the vector of dual variables, Y is a diagonal matrix made up of all training bag labels, and
Kθ is the kernel matrix of all training bag pairs for a given θ. It is proven in [6, 4] that if k, r,
∇θk and ∇θr are smooth functions of θ and if α∗, which is the solution to the dual maximization
problem in (18), is unique,∇θW exists, and the derivatives are expressed by

∂T

∂θd
=
∂W

∂θd
=

r

∂θd
− 1

2
α∗tY

∂Kθ

∂θd
Yα∗. (19)

Note that α∗n is zero except for the support vectors, and consequently, ∂Kθ

∂θd
is only required to

be computed for the support vectors. This can significantly reduces the computational cost of the
algorithm, especially, if it is integrated with ideas such as reduced support vector machines (RSVM)
[18]. Using the derivatives in a coordinate descent approach, learning is an iterative procedure of
alternating between finding α∗ by a standard kernel SVM dual optimization in (18) given θ fixed,
and next updating θ by moving in the direction of derivities calculated in (19) given α∗ from the
previous step. Note that if the L1 regularization function r(θ) = λ‖θ‖1 is desired, the smooth
L1-norm approximation [23] should be employed to satisfy the necessary conditions.

To use this algorithm, the key issue is to calculate the derivatives of the kernel matrix Kθ =
[kθ(Xp,Xq)]N×N w.r.t. the learning parameters θd:

∂Kθ

∂θd
=

[
∂kθ
∂θd

(Xp,Xq)

]
N×N

. (20)

The derivatives of each element of the kernel matrix are given by

∂kθ
∂θd

(Xp,Xq) =

∂k̃θ
∂θd

(Xp,Xq)√
k̃θ(Xp,Xp)

√
k̃θ(Xq,Xq)

−
kθ(Xp,Xq)

∂k̃θ
∂θd

(Xp,Xp)

2k̃θ(Xp,Xp)
−
kθ(Xp,Xq)

∂k̃θ
∂θd

(Xq,Xq)

2k̃θ(Xq,Xq)
,

(21)

where

∂k̃θ
∂θd

(Xp,Xq) =

mp∑
i=1

mq∑
j=1

kx(xpi,xqj)(
∂Pθ(ypi|Xp)

∂θd

∣∣∣
ypi=1

· Pθ(yqj = 1|Xq) + Pθ(ypi = 1|Xp) ·
∂Pθ(yqj |Xq)

∂θd

∣∣∣
yqj=1

+
∂Pθ(ypi|Xp)

∂θd

∣∣∣
ypi=0

· Pθ(yqj = 0|Xq) + Pθ(ypi = 0|Xp) ·
∂Pθ(yqj |Xq)

∂θd

∣∣∣
yqj=0

)
.

(22)

So, the only thing needed is to find ∂Pθ(yi|X)
∂θd

for a given yi in a bag X. Actually, calculating these
derivities is not straightforward, but taking derivities of logP (yi|X) is quite similar to taking the
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derivatives of the log likelihood function in hCRFs [22]. Thus, by exploiting the relations in [22]
and the chain rule ∂logPθ

∂θd
= 1

Pθ

∂Pθ

∂θd
, it can be shown that

∂Pθ(yi|X)

∂θd
= Pθ(yi|X)

(∑
i′

∑
yi′

Pθ(yi′ |yi,X)xi′d yi′ −
∑
i′

∑
yi′

Pθ(yi′ |X)xi′d yi′
)
. (23)

The calculation of Pθ(yi|X) is described in (13). Pθ(yi′ |yi,X) can be calculated in the same way
except that one of the hidden variables has been observed (i.e., canceled out), and consequently
the cardinality potential of the resulting model (which has m − 1 unobserved variables) has been
modified accordingly. Thus, for each i and all i′, Pθ(yi′ |yi,X) is computed in O

(
m log2m

)
time.

Putting all the above together we propose a new algorithm, namely multi-instance cardinality poten-
tial kernel learning (MICPKL). The pseudo-code of this algorithm is provided in Algorithm 1.

Algorithm 1 Multiple Instance Cardinality Potential Kernel Learning
Input: Training data {(Xn, Yn)}Nn=1, Cardinality potential parameters µ and σ, Regularization
parameters λ and C, Maximum number of iterations.
Initialize θ randomly.
repeat
K = [kθ(Xp,Xq)]N×N .
Find α∗ by solving the standard kernel SVM dual optimization in (18) with K.
Find ∂K

∂θd
using (20), (21), (22), (23).

θd = θd − η( r
∂θd
− 1

2α
∗tY ∂K

∂θd
Yα∗).

until converged or maximum number of iterations

4.3 Computational Complexity

We analyze the time complexity of the MICP kernel. Assuming that evaluation of the primitive ker-
nel kx takes O(d) time, kx(·, ·) between all instance pairs of two bags Xp and Xq can be computed
in O(mpmqd). As we explained in Section 4.1, the time complexity of computing P (yi|Y,X) is
O
(
m log2m

)
. So, the kernel in (15) can be evaluated in O(mpmqd + mp log2mp + mq log2mq)

time. As a result, the computational complexity of prediction for a single bag Xp with this kernel is
O(Nsv m̄mp d + Nsv m̄ log2 m̄ + mp log2mp), where Nsv is the number of support vectors and
m̄ is the maximum number of instances in a training bag.

Second, we analyze the computational complexity of the MICPK-SVM algorithm. First, the pa-
rameters of an MICPM should be learned. Training this hCRF with likelihood maximization takes
O(NiterN m̄ log2 m̄ + NiterN m̄d) time, where Niter is the number of iterations of the gradient
ascent algorithm. The kernel matrix can be computed in O(N2 m̄2 d+N m̄ log2 m̄) time. Finally,
assuming the quadratic programming to solve the SVM dual takes O(N3) time1, the computational
complexity of the entire algorithm is O(NiterN m̄ log2 m̄+NiterN m̄d+N2 m̄2 d+N3).

Third, we show the computational complexity of MICPKL algorithm. According to what was
explained in Section 4.2, for a given bag X , computing P (yi′ |yi,X) for all the instances takes
O(m2 log2m) time, and so computation of all the derivatives in (23) takes O(m2 log2m + m2 d).
Consequently, the time complexity of finding the kernel derivatives in (22) and (21) isO(mpmq d+

m2
p log2mp+m2

p d+m2
q log2mq+m2

q d). Using this, the kernel matrix derivatives are computed in
O(N2

sv m̄
2 d+Nsv m̄

2 log2 m̄) time, where Nsv is the number of support vectors. Finally, with the
assumption that the quadratic programming in (18) takes O(N3), the computational complexity of
MICPKL is given by O(NiterN

2
sv m̄

2 d+NiterNsv d m̄
2 log2 m̄+NiterN

3) for Niter iterations.

5 Experiments
In this section, the performance of the proposed methods is evaluated on different datasets.

1In our experiments, we used LIBSVM [3] solver, which can be much more efficient than O(N3) in practice.
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5.1 MIL Benchmark Datasets

The standard MIL benchmark datasets are the Elephant, Fox, Tiger image categorization datasets [2],
and the Musk1 and Musk2 drug activity prediction datasets [8]. Though dated, these are the standard
benchmark on which MIL algorithms are evaluated. In all the experiments, we have preprocessed
datasets by scaling the features of the original datasets to the range [0, 1]. We run our methods
with Normal cardinality potentials where σ is set to 0.1 and µ was estimated by grid search in
{0.1, 0.2, · · · , 1.0} for MICPM (the same values were then used for MICPK-SVM and MICPKL).
The regularization weights λ andC are also roughly optimized on 10-fold cross-validation accuracy.
For MICPK-SVM and MICPKL, similar to the MI-Kernel setting in [10], we use RBF kernels as
the instance kernels. The results are reported based on 10-fold cross-validation classification accu-
racy and compared with the state-of-the-art MIL methods in Table 1. It can be seen that MICPKL
performs well compared to the other methods. More specifically, it achieves the best accuracy on
the Elephant, Fox, and Tiger data sets. In addition, MICPK-SVM is by and large comparable to the
best methods although it is more computationally efficient than MICPKL.

Table 1: Comparison between state-of-the-art MIL methods. The best and second best results are
highlighted in bold and italic face respectively.

Method Elephant Fox Tiger Musk1 Musk2 Average
MICPM 84 65 86 81 83 79.8
MICPK-SVM 88 63 87 89 89 83.2
MICPKL 89 71 88 89 89 85.2
MIMN [12] 89 64 87 86 90 83.2
MIRealBoost [13] 83 63 73 91 77 77.4
ClassSetMaxRBMXOR [21] 88 60 83 84 84 79.8
MI-CRF [7] 85 68 83 88 85 81.8
MIGraph [28] 85 61 82 90 90 81.6
miGraph [28] 87 62 86 90 90 83.0
ALP-SVM [11] 84 66 86 86 86 81.6
MILES [5] 81 62 80 88 83 78.8
MI-Kernel [10] 84 60 84 88 89 81.0
mi-SVM [2] 82 58 79 87 84 78.0
MI-SVM [2] 81 59 84 78 84 77.2

6 Conclusion

We proposed a novel kernel learning framework for multi-instance classification. This framework is
constructed based on a multi-instance cardinality potential model, which can explore different levels
of ambiguity in instance labels and model different cardinality-based assumptions. In addition,
the proposed adaptive kernel can help to perform classification within a bag-level paradigm and
in a task-specific discriminative embedded space of even infinite dimensionality. The results of
our experiments on standard MIL benchmark datasets showed the efficacy of the proposed kernel
learning approach for multi-instance classification. This kernel learning approach can be extended
to different variants of conditional random fields for other structured prediction tasks.
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