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Abstract

Many visual recognition tasks can be represented as multiple instance problems. Two
examples are image categorization and video classification, where the instances are the
image segments and video frames, respectively. In this regard, detecting and counting
the instances of interest can help to improve recognition in a variety of applications. For
example, classifying the collective activity of a group of people can be directed by counting
the actions of individual people. Further, encoding the cardinality-based relationships can
reduce sensitivity to clutter or ambiguity, in the form of individuals not involved in a group
activity or irrelevant segments/frames in an image/video.

Multiple instance learning (MIL) aims to use these counting relations in order to recognize
patterns from weakly supervised data. Contrary to standard supervised learning, where
each training instance is labeled, in the MIL paradigm a bag of instances share a label,
and the instance labels are hidden. This weak supervision significantly reduces the cost
of full annotation in many recognition tasks. However, it makes learning and recognition
more challenging. In a general MIL problem, three major issues usually emerge: how to
infer instance labels without full supervision; how the cardinality relations between instance
labels contribute to predict the bag label; how the the bag as a whole entity which integrates
the instances is labeled. In this thesis, we try to address all these challenges.

To this end, first we propose a boosting framework for MIL, which can model a wide range of
soft and linguistic cardinality relations. Next, a probabilistic graphical model is proposed to
capture the interactions and interrelations between instances, instance labels, and the whole
bag. This is a general and flexible model, which can encode any cardinality-based relations.
For training this model, we introduce novel algorithms based on latent max-margin classifi-
cation, kernel learning, and gradient boosting. Thus, very rich and high-capacity models are
obtained for bag classification. We evaluate our proposed methods in various applications
such as image classification, human group activity recognition, human action recognition,
video recognition, unconstrained video event detection, and video summarization.

Keywords: Multiple instance learning; probabilistic graphical models; latent structured
models; visual recognition
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Chapter 1

Introduction

In the standard supervised learning, training data is given as labeled instances, and the goal
is to train a classifier to predict the labels of new instances. However, this full supervision
might be costly in some practical applications. For example, full annotation of objects or
people in all training images needs a lot of human labor. Further, this annotation might
be noisy or inaccurate because of human misjudgment or fatigue. Contrary to standard
supervised learning, multiple instance learning (MIL) is a type of weakly supervised learning,
where training data is given as bags (i.e., sets) of instances. In MIL, the bag labels are given
for training, but the instance labels are missing. As illustrated in Fig. 1.1, a bag could be
an image with a set of patches, segments, or people in it as instances; or a bag could be a
long video sequence containing a set of frames or smaller temporal clips as instances.

Multiple instance learning defines the new notion of labeled bags. For example, in the
binary case, the data is represented as positive and negative bags. To define positive or
negative bags, some cardinality (i.e., count-based) relations are used, which are also known
as multi-instance (MI) assumptions. For example, a fall event in a nursing home (Fig. 1.1b)
can be detected by using the following count-based assumption: "in a fall event at least
one person is fallen." Actually, this is the most traditional multi-instance assumption in
MIL literature, which states a bag is positive if at least one of the instances in the bag is
positive. However, this assumption is not effective in all MIL application. For example,
in group activity recognition (Fig. 1.1e) the collective activity of a group of individuals is
determined by the majority of people involved in the activity.

These count-based assumptions not only help to capture some intrinsic or intuitive
relations in the problem but also enhances robustness against noise, ambiguity, or clutter,
incurred by low-quality representation/annotation of input data or imperfect intermediate
processing stages. For example, in group activity recognition, there might be clutter in the
form of people in a scene performing unrelated actions, or noise in the form imperfect person
detection or noisy tracking. Another example is unconstrained internet video analysis.
Detecting events in internet videos (Fig. 1.1c) or determining whether part of a video is

1



interesting (Fig. 1.1d) are challenging for many reasons, including temporal clutter – videos
often contain frames unrelated to the event of interest or that are difficult to classify. In this
dissertation, we present frameworks built on probabilistic multi-instance models to encode
these count-based relations and deal with the ambiguity or clutter in data.

?

?

?

?

?

?

?

?
?

?

?

(a) What is the image category?

? ?

?

?

?

?
?

(b) Is this a fall scene?

? ? ? ? ?

?

(c) What is the video event?

?????

?
?

(d) Is this video segment interesting?

?
??

?
?

?
?

?

(e) What is the collective activity?

? ? ? ? ?

?

(f) Is the cyclist wearing helmet?

Figure 1.1: In multiple instance learning framework, data is given as bags of instances.
Multiple instance learning can be applied to a variety of visual recognition problems. Here,
some examples are presented. (a) Image categorization: an image is represented as a bag of
image patches extracted from regions of interests in the image. (b) Fall detection in a nursing
home and (e) human group activity recognition: a scene is represented as a bag of individuals
doing different actions. (c) Video event detection: a video is represented as a bag of frames
or temporal segments. (d) Detecting interesting video segments for video summarization:
a video segment is represented as a bag of frames. (f) Cyclist helmet recognition: a cyclist
track is represented as a bag of automatically extracted windows around the cyclist’s head
position estimate. The multi-instance assumption varies in different applications. One
person is enough to detect a fall scene, while the majority of people are involved in a
collective activity.
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MIL methods aim to train a classifier to discriminate between positive and negative
bags. In this regard, MIL algorithms are categorized into instance-space and bag-space
methods. In the instance-space paradigm, an instance classifier is trained to classify pos-
itive and negative instances, and based on the instance-level predictions a bag classifier
is obtained. Thus in these methods, the mechanism which determines how the instance
labels contribute to bag prediction is important. This mechanism is usually built on the
multi-instance assumptions. The standard MI assumption states that a bag is positive if it
contains at least one positive instance, while in a negative bag all the instances are negative.
This ambiguity in the instance labels is passed on to the learning algorithm, which should
incorporate the information to classify bags. The standard assumption was proposed for
the early applications of MIL (e.g. drug activity recognition [25]). However, the standard
MI assumption gives a relatively weak prior information for many other MIL applications
such as group activity recognition. Hence, using a more solid and informative assumption
can help to train more robust and powerful classifiers.

In recent works, more relaxed and general MI assumptions have been studied such as
ratio-based assumptions [67, 92], where the proportion of positive instances in a bag deter-
mines the bag label. For example, an immediate extension to the standard MI assumption
is that a bag is positive if at least a certain ratio of instances are positive. According
to [40, 67, 60, 69], encoding the level of ambiguity of instance labels (e.g., the portion of
positive instances in a bag) in the classifier by using an appropriate MI assumption can sig-
nificantly influence the accuracy of classification. One main contribution of this dissertation
is to propose models which can encode general and intuitive multi-instance assumptions such
as the "majority of instances in a bag are positive", or "a certain proportion of instances
are positive", or "a few instances of a bag are positive", or "the more positive instances,
the more probable positive bag". We show that this flexible multi-instance encoding can
enhance visual recognition.

On the other hand, in the bag-space paradigm, a classifier is trained directly on bags
by extracting discriminative information from the whole bag. For example, each bag is
mapped to a single feature vector, which summarizes the whole bag information, and next
a standard single-instance learner is used to classify the bags represented in the result-
ing vectorial embedding space. According to some comparative studies [5], by and large,
bag-space methods tend to outperform instance-space methods for bag classification1. In
fact, by defining appropriate kernel, distance, or mapping functions, the bag-space meth-
ods can extract unified metadata information, which can improve classification accuracy.
In this respect, kernel methods can make it possible to work even in infinite-dimensional

1Note that most bag-space methods lack the ability for instance classification. Actually, in most MIL
problems, the goal is to classify the bags. But, in many applications predicting the instance labels might
also matter.
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spaces, which might increase discrimination power of the original MIL classifier. Another
contribution of this dissertation is proposing new kernels for multi-instance classification.

Putting all above together, this research is focused on proposing novel MIL algorithms
to address three main issues: (1) weakly supervised learning of models which have latent
instance labels; (2) encoding the level of ambiguity of instance labels by using general MI as-
sumptions; and (3) extracting discriminative instance-level and bag-level information from
bags and integrating this information to improve multi-instance classification (i.e., com-
bining instance-space and bag-space methods). For the first one, we propose probabilistic
models which represent instance labels as latent variables. For the second issue, we intro-
duce linguistic aggregation functions or cardinality potential models to combine instance
labels and make various MI assumptions. Encoding these general MI assumptions help to
train more powerful classifiers which are more robust to the amount of ambiguity (i.e. true
positive instance labels) in the bags and more compatible to the classification task. For the
latter, we model the bags with structured graphical models integrating instance-level and
bag-level representation of bags. Further, we propose a novel kernel to map the whole infor-
mation stored and consolidated in these structured models into a discriminative vectorial
embedding space.

1.1 Contributions

This dissertation contributes to visual recognition by proposing novel and general frame-
works for multiple instance learning. The proposed methods help to encode various multi-
instance assumptions and cardinality relations in visual recognition problems with weak
supervision. The detailed contributions of this work are highlighted as follows2.

•. Showing the importance of encoding cardinality relations for visual recog-
nition. We show in different applications such as group activity recognition (Chap-
ters 4, 5, 6), image categorization (Chapters 3, 4), video classification (Chapter 4),
video event detection (Chapters 5, 6), and video summarization (Chapter 5) that en-
coding cardinality relations improves visual recognition. This is because that either
the cardinality relations are intuitive and intrinsic to the problem (e.g. group activity
recognition) or at least they help to enhance robustness against clutter, noise, and
ambiguity. Note that although modeling spatiotemporal relations is very common in
computer vision, however, cardinality relations have been usually ignored in struc-
tured visual recognition. In fact, MIL methods have been traditionally used to handle
the labeling ambiguity of independent instances rather than modeling an intrinsic
cardinality relation between instances.

2These contributions have been reported in the following publications (or submissions) [47, 46, 50, 48, 49].
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•. Novel MIL frameworks to model general multi-instance assumptions or
cardinality relations. We propose frameworks which can encode the standard
MI assumption as well as more general MI assumptions in order to model various
cardinality-based relations or deal with different levels of ambiguity in data. A sum-
mary of the encoded multi-instance assumptions is provided as follows:

(a) soft linguistic assumptions such as "few instances are positive" or "many instances
are positive" (Chapter 3).

(b) hard ratio-based assumptions such as "at least 30% of instances are positive" or
"at most 60% of instances are positive" (Chapters 4, 5).

(c) soft probabilistic assumptions such as "the more positive instances, the more
probable positive bag" (Chapter 5).

(d) An estimated cardinality-based relation between instance labels which is learned
directly from training data (Chapter 4).

(e) Metadata assumptions, i.e., assumptions that are not based on cardinality of
instance labels but extracted from the bag as a whole entity (Chapter 5 and
Appendix A).

(f) Mixed assumptions: Our proposed structured models can also combine cardinal-
ity assumptions with metadata assumptions to integrate local and global repre-
sentations of a bag (Chapters 4, 6).

Also the proposed models have exact and efficient inference algorithms, which make
prediction fast and reliable.

•. Novel learning algorithms for training latent probabilistic models. We pro-
pose novel learning algorithms based on boosting (Chapter 3), latent max-margin
training (Chapter 4), kernel learning (Chapter 5, Appendix A), and structured func-
tional optimization (Chapter 6). All these methods (except the boosting algorithm
in Chapter 3) are principled algorithms with convergence guarantees and predictable
computational complexities.
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Chapter 2

Previous Work

MIL has been successfully used in many applications such as drug activity prediction [25],
image categorization [18], text categorization [6], content-based image retrieval [120], text-
based image retrieval [67, 30], automatic image annotation [110], object detection [99],
object localization [37], tracking [8], and video analysis/recognition [52, 64, 104, 60]. Di-
etterich et al. [25] proposed the first application of MIL. This application aims to classify
molecules to “musk” or “non-musk” type for the purpose of drug activity prediction. In
fact, because of twisting or bending, each molecule can have different conformations (i.e.
shapes). However, it is unknown or significantly hard to figure out which conformation
results in the musk label. Thus, each molecule is represented as a bag of conformations,
where in a positive bag at least one of the conformations is of musk type and in a negative
bag all the conformations are of non-musk type.

Because of the multi-unit structure of MIL, it is a natural fit to various computer vision
problems. Chen et al. [18] treated each image as a bag of instances corresponding to blocks,
regions, or patches of the image for the purpose of image categorization. Li et al. [67] and
Duan et al. [30] used MIL to handle ambiguity in labels of training images incurred by
coarse ranking of web images. Wu et al. [110] proposed deep MIL models for automatic
image annotations. An image is formed as a bag of noisy candidate keywords extracted from
web data. Next, the proposed MIL model identifies the relevant keywords which provide
more rich annotations for the image. Galleguillos et al. [37] showed the application of MIL
in object localization. An image is represented as a bag of segments, where by classifying the
segments, the object is also localized. Viola et al. [99] used MIL to overcome the ambiguity
in object annotation, by representing each image with a bag of windows centered around
the ground truth. Likewise, in object tracking Babenko et al. [8] used several blocks around
the estimated object location to construct a positive training bag for MIL. Hu et al. [52]
applied MIL to human action detection in videos. In the proposed approach, each video was
segmented at variant location/scale with different temporal length to make the instances
of a bag. Leung et al. [64] used MIL to increase robustness against label noise in video

6



classification. To this end, positive training videos were divided into positive bags instead
of being individually labeled. This approach was used for YouTube video classification,
and the experiments verified increase of robustness against label noise. Wang et al. [104]
applied MIL to recognize videos by treating each video as a bag of frames. Lai et al. [60]
applied MIL for video event detection by representing a video as multi-granular temporal
video segments.

To solve the problems discussed above, a variety of MIL algorithms have been proposed
in the last two decades. The input to these algorithms are labeled bags of instances. Let
Xi = {xi1, · · · ,xim} denote a bag with m instances and a binary label Yi ∈ {−1, 1}. Each
instance is represented by a fixed-size feature vector xij ∈ Rd. In most MI assumptions,
the instances have also binary labels yij ∈ {−1, 1}, which are unknown. Finally the whole
training data is represented by {(X1, Y1) , · · · , (XN , YN )}. Given this, the goal is to learn
a bag classification function F (X), which scores the bag for being positive. In this respect,
some methods try to firstly learn an instance-level scoring function f(x).

Generally, MIL methods can be categorized based on different criteria such as the learn-
ing approach (e.g. maximum likelihood, max-margin, etc.) [7], the multi-instance assump-
tion (e.g. standard assumption, ratio-based assumption, etc.) [33], or the space/level that
the discriminative information lies in the method (instance-space vs. bag-space) [5]. In
this chapter, we review a variety of representative MIL methods in two main sections of
instance-space methods (a.k.a. instance-level methods) and bag-space methods (a.k.a. bag-
level methods). However, we also try to briefly explain the learning approach and the
multi-instance assumption used in each method. These algorithms provide guidelines and
ideas to propose new MIL methods, which will be presented in the subsequent chapters.

2.1 Instance-Space Methods

Instance-level methods classify bags by aggregation of instance-level classification scores.
To this end, an instance-level classifier is trained to classify positive and negative instances
in the instance space, and based on these classifiers a bag-level classifier is obtained.

2.1.1 Methods Encoding Standard MI Assumption

Most early algorithms for MIL follow the standard MI assumption. Here, we review some
of these algorithms.

Axis-Parallel Rectangle

Dietterich et al. [25] introduced one of the first methods for MIL. The main idea is to find
a hyper-rectangle R that maximizes the number of positive bags which have at least one
instance in R, and at the same time, maximizes the number of negative bags which have
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no instance in R. This rectangle is called an axis-parallel rectangle (APR) and considered
as an instance classifier:

f(xij ,R) =

1 if xij ∈ R

0 o.w.
. (2.1)

Based on this, a bag is classified as positive if at least one of the instances falls in R – i.e.,
at least one of the instances is positive:

F (Xi) = max
j
f(xij ,R) (2.2)

Hence, this algorithm works based on the standard MI assumption. To find the hyper-
rectangle, three heuristic algorithms are proposed in [25]: the “standard” algorithm, the
“outside-in” algorithm, and the “inside-out” algorithm. The standard algorithm finds the
smallest APR which encloses all the instances in positive bags. Obviously, this all-positive
APR is not a good hypothesis. Thus, it is followed by a greedy algorithm to eliminate the
negative instances which require eliminating the least number of instances from positive
bags. Finally, another greedy procedure is used to select a subset of features (i.e. bounds)
which are sufficient to exclude all negative instances.

The outside-in algorithm follows the same procedure as the standard algorithm. But, for
eliminating the negative instances it uses a better cost function to eliminate the cheapest
negative instances. The new cost function computes the cost of eliminating the positive
instances which should be removed after eliminating a negative instance based on the number
and density of the surviving (i.e. remaining) instances inside the bags.

The inside-out algorithm starts by a greedy algorithm to grow an APR that bounds at
least one instance from every positive bag. Then it analyzes the APR to select the most
discriminative features. Finally, kernel density estimation is used to expand the bounds
of the APR so that the probability of having new positive instances fall inside the APR
increases. This procedure relaxes the tight bounds constructed in the previous steps and
consequently improves generalization.

Diverse Density

Maron et al. [75] proposed diverse density (DD) approach to MIL. The main idea of DD is
to find an instance prototype (a.k.a. target point or concept point), which is close to at least
one instance of every positive bag but far from instances of all negative bags. This point
is obtained by maximizing the diverse density function, which is the likelihood function of
training bags, given a Gaussian-like probability distribution over instances. The probability
distribution of any instance xij is computed based on a weighted distance between the

8



instance and the target point:

pij = exp(−‖xij − x‖2w) (2.3)

Next, the bag probability can be obtained by a soft-max operation, e.g. Noisy-OR (NOR),
and incorporated into the likelihood function:

DD(x,w) =
∏
i

1 + Yi
2 − Yi

∏
j

(1− exp(−‖xij − x‖2w))

 (2.4)

By maximizing the DD function, we get the target point x and the weight vector w.
However, it is a non-convex optimization problem, and a different local maximum could be
found with a different initialization. So, one possible modification is to find multiple target
points, and compute the instance probabilities by taking max over the target points. To
this end, optimization restarts multiple times with instances from positive bags as initial
points. This is because the target points are close to positive instances according to the
DD definition.

EM-DD [120] is the expectation-maximization (EM) version of above-mentioned DD
algorithm. In this version, the soft-max generation of the bag probability is replaced by
the exact max operation. So, the likelihood function is no more differentiable. As a result,
an EM-like algorithm is proposed to maximize the likelihood. The algorithm iterates over
two steps of (1) finding the most probable instance of each positive bag according to the
current estimate of classifier and (2) refining the estimate of x and w by maximizing the
DD function, using all negative instances and the positive instances found in the previous
step.

Multi-Instance SVMs

Andrews et al. [6] adapted SVM to the MIL problem, and proposed mi-SVM and MI-SVM
algorithms. Both these algorithms are max-margin algorithms, which are formulated as
mixed integer optimization problems. The main difference between these two algorithms
is how margin is defined in the MIL problem. mi-SVM is based on an instance margin
formulation, while MI-SVM is based on a bag margin formulation of MIL.

mi-SVM aims to maximize the instance margin jointly over the latent instance labels.
Thus, it attemps to recover every instance label. For the negative bags, the instance label
is known to be negative, but we need to identify the instance labels for positive bags. So,
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the max-margin mixed integer optimization of the mi-SVM is defined as follows:

min
yij

min
w,b,ξ

1
2‖w‖

2 + C
∑
ij

ξij

st. yij = −1, ∀i|Yi = −1∑
j

yij + 1
2 ≥ 1, ∀i|Yi = 1

yij(w.xij + b) ≥ 1− ξij , ξij ≥ 0.

(2.5)

The constraints impose that instance labels of a negative bag are always negative, but in
a positive bag at least one of the instances is positive. This problem is a mixed integer
program, which is hard to be solved.

To come up with this problem, Andrews et al. proposed a heuristic algorithm. This
algorithm iterates over two steps of inferring integer latent instance labels and continuous
optimization of the weight vector. In the first step, given the current classifier, we estimate
the instance labels of positive bags. However, if all the instance labels come out as negative,
the instance with the largest score (i.e. w.xij + b) is labeled positive. In the second
step, using the estimated instance labels, we train a standard SVM to classify positive and
negative instances. For initialization of this algorithm, all instances of the positive bags
are assumed as postie instances in the fist iteration. This algorithm has no convergence
guarantee, but it shows good performance in the experimental studies.

MI-SVM aims to maximize the bag margin, where the bag margin is defined by the
most postive instance of the bag (a.k.a witness instance):

γi ≡ Yi max
j

(w.xij + b). (2.6)

In fact, this margin is derived from the standard MI assumption. Using this assump-
tion, the bag label is given by the label of the instance with the largest score, i.e., Y ? =
sign maxj (w.xij + b). As a result, each bag can be represented by one instance (a.k.a.
witness instance), and we try to have large margins for these instances. However, since we
usually have no ambiguity in the negative bags, we can unfold the negative bag instances,
and define the margin for each negative instance as in regular SVM. Consequently, the
maximum bag margin formulation of MIL is given by:

min
w,b,ξ

1
2‖w‖

2 + C
∑
i

ξi

st. −w.xij − b ≥ 1− ξi, ∀i|Yi = −1

max
j

(w.xij + b) ≥ 1− ξi, ∀i|Yi = 1.

(2.7)
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It can be observed that unlike mi-SVM, where all instances matter in the optimization
problem, in MI-SVM only the most positive instance of each positive bag represents the
whole bag, and all the other instances have no contribution to the resulting classification
boundary. By introducing a selector variable s(i), which indicates the witness instance of
each positive bag, the above problem in (2.7) is converted to an equivalent mixed-integer
program:

min
s(i)

min
w,b,ξ

1
2‖w‖

2 + C
∑
i

ξi

st. −w.xij − b ≥ 1− ξi, ∀i|Yi = −1

w.xis(i) + b ≥ 1− ξi, ∀i|Yi = 1.

(2.8)

Similar to mi-SVM, the mixed integer program of MI-SVM is a hard optimization prob-
lem, and Andrews et al. proposed a two-step iterative heuristic algorithm to solve it ap-
proximately. At each iteration, first s(i) is guessed by computing the scores of all instances
of every positive bag using the current SVM classifier and selecting the instance with the
largest score. In the second step, a standard SVM classifier is trained by the selected witness
instances and all negative instances in order to update the weight vector. For initialization,
each bag is represented by the centroid of the instances inside the bag.

Following the SVM formulations of MIL, Mangasarian and Wild [74] proposed MICA.
MICA is an extension of MI-SVM, which does not explicitly identify a witness instance in
a bag but finds a convex combination of the instances as a witness. Furthermore, MICA
is formulated by L1 regularization of the weights. Bunescu and Mooney [12] used the
transductive SVM framework to propose a modified version of mi-SVM which can more
directly enforce the standard multi-instance assumption and perform more effectively for
sparse positive bags.

The very successful Latent SVM [32] can be also considered as a MIL method. In Latent
SVM, a set of latent variable values is used for positive instances. One can consider the set
of completed data instances (latent variable values with observed input feature values) as
a “bag” in MIL, similar to the MI-SVM framework.

Deterministic Annealing for MIL (AL-SVM and AW-SVM)

Gehler and Chapelle [40] proposed deterministic annealing versions of mi-SVM and MI-SVM
algorithms. In these algorithms, deterministic annealing (DA) is applied to mixed-integer
programs of different MIL SVM formulations to find better solutions.

In general, DA searches for a local minimum of a non-convex optimization problem of
the form y∗ = arg miny∈Z F (y), where y is a set of discrete variables. By considering the
discrete variables as random variables over a space of probability distributions P, DA tries
to find a distribution p ∈ P, which minimizes the expected objective function Ep (F (y)).
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However, to find a good local minimum (which is close to the global minimum) of this
non-convex objective function, the Entropy of the distribution H(p) as a convex term is
added to the objective function:

p∗ = arg min
p∈P

Ep (F (y))− T H(p), (2.9)

where T indicates the temperature of annealing. The original problem arg minp∈P Ep (F (y))
is solved in a sequence of solving the optimization problem in (2.9) by changing the param-
eter T . The sequence starts by a large value T0 � 0 so that the optimization would be
inclined to be convex, and gradually the value of T decreases until T∞ = 0, which yields the
original problem. Finally, the discrete deterministic varialbes y∗ are identified according to
p∗.

In this respect, AL-SVM, uses DA to optimize the mi-SVM objective function in (2.5).
The instance labels yij are regarded as random binary variables with the distributios P (yij =
1) = pij . Using the DA principles, the optimization problem is converted to optimizing the
following DA objective function:

LT (w, b,p) =‖w‖2 + C
∑
i

∑
j

pij l (w.xij + b) + (1− pij) l (−w.xij − b)ξij

+ T
∑
i

∑
j

pij log pij + (1− pij) log (1− pij)

st. 0 ≤ pij ≤ 1, ∀i, j∑
j

pij ≥ 1, ∀i|Yi = 1.

(2.10)

Note that in this formulation, the last constraint of mi-SVM in (2.5) has been replaced by
the hinge loss function l. It is also interesting that by taking the expectation, the MIL
constraint

∑
j
yij+1

2 ≥ 1 is translated to
∑
j pij ≥ 1. To solve this optimization prob-

lem, an iterative coordinate descent algorithm of alternating between estimating the SVM
parameters {w∗, b∗} = arg minw,b LT (w, b,p∗) and updating the probability distributions
p∗ = arg minp LT (w∗, b∗,p) is proposed. The former is solved by quadratic programming,
and the latter is performed by optimizing the dual function of the program.

AW-SVM is the DA version of MI-SVM and MICA. In this algorithm, a probability
distribution is defined over each bag and describes the probability of each instance being
the witness instance of the bag, i.e., P (xij = witnessi) = pij . So, we have a new constraint∑
j pij = 1, and the MI-SVM optimization problem in (2.7) is translated into the following
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DA objective function:

LT (w, b,p) =‖w‖2 + C
∑
i

∑
j

pij l (yi(w.xij + b)) + T
∑
i

∑
j

pij log pij

st. 0 ≤ pij , ∀i, j∑
j

pij = 1, ∀i|Yi = 1.

(2.11)

This optimization problem is solved similar to the coordinate descent algorithm of AL-SVM.

MI-Forests

Leistner et al. [63] proposed MI-Forests, which is a multi-instance classification algorithm
based on randomized trees. The general approach is to define the labels of instances inside
the bags as random variables which are obtained by optimization of a confidence-maximizing
loss function over randomized trees, using a fast iterative DA-based method. More specif-
ically, the MIL problem is formulated as an optimization procedure with the following
objective function

(y?ij , F ?) = arg min
yij ,F (.)

∑
i

∑
j

l(Fyij (xij)),

st. At least one instance in each bag

has the same label as the bag label,

(2.12)

where Fk(x) is the classification confidence of the random forest classifier F for assigning
the label k to the input x out of the K possible class labels (i.e., Fk(x) = p(y = k|x)−1/K),
and l(.) is a loss function which negates the confidence score. Since a random forest should
be trained in this optimization, and simultaneously the instance labels (which are integer
variables) should be found, this problem is a non-convex combinatorial problem which is
usually hard to tackle. However, Leistner et al. proposed a fast iterative algorithm based on
deterministic annealing. In this approach, a convex entropy term is added to the objective
function, and the iterative procedure initiates with optimization of this term over a space of
probability distributions. First, the instance labels in the bags are transformed to random
variables defined over a space of probability distributions P. The goal is to optimize the
probability distribution p̂ for each bag and train the random forest F at the same time:

(p?, F ?) = arg min
p̂,F (.)

∑
i

∑
j

∑
k

p̂(k|xij)l(Fk(xij)) + T
∑
i

H(p̂i),

st. At least one instance in each bag

has the same label as the bag label,

(2.13)
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where H denotes the Entropy function, and T is the temperature parameter of DA. T is set
to a large value at the first iteration such that the entropy term dominates the loss function,
but it is gradually decreased to zero in order to reach the original optimization problem.
To solve the optimization problem in (2.13), the problem is split into a two-step convex
optimization problem. First, the distribution p̂ is fixed, and for every tree the labels of
the training instances are randomly chosen according to this distribution. Next, a random
forest is trained by these instances and the corresponding instance labels. In order to satisfy
the MIL constraint, for each bag the label of the instance with the highest probability is
set to the bag label. After training the randomized trees, the probability distribution p̂ is
optimized with respect to the objective function in (2.13), given the random forest fixed.
This is a convex optimization problem, which is solved by taking the derivatives and setting
to zero.

In addition, Leistner et al. [63] extended this algorithm to an on-line procedure, where
the bags arrive sequentially. To this end, bagging (in random forest training) is performed
on-line by modeling the arriving samples with a Poisson distribution. Also, the decision
trees are trained on-line, and the probability distribution in (2.13) is updated sequentially.

The advantages of using random forests in the proposed algorithm is that they are fast
in both training and test, and also they are inherently parallel and multi-class.

MILBoost

Viola et al. [99] proposed MILBoost, a boosting algorithm adapted for MIL. Boosting is
defined as a general algorithm to make an accurate prediction rule by combining some rough
and week rules. The general idea is that the boosting algorithm repeatedly calls a weak or
base classifier and trains it with a different distribution over training samples. Finally, the
strong classifier is given as weighted sum of the weak classifiers:

H(x) =
T∑
t=1

αtht(x), (2.14)

where ht and αt denote a weak classifier and a positive weight at step t, respectively. One
approach of finding ht and αt is to employ AnyBoost framework [76]. AnyBoost tries to
minimize a cost function L(H) with respect to H in a functional space by performing
gradient descent. At each step of boosting, first a weight wi is computed for each data
example xi: wi = ∂L

∂H |x=xi . Next, ht and αt are obtained by solving the following two
optimization problems:

ht = arg max
h

∑
i

wih(xi), (2.15)

αt = arg min
α

L(Ht−1 + αht). (2.16)
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The proposed MILBoost uses AnyBoost framework to minimize the negative log likeli-
hood of the training bags:

L(H) =
∑
i

1(Yi = 1) log p(Xi) + 1(Yi = −1) log (1− p(Xi)) , (2.17)

where p(Xi) is the probability of the ith bag being positive and expressed in terms of its
instance probabilities by the Noisy-OR (NOR) model:

p(Xi) = 1−
∏

xij∈Xi

(1− p(xij)) , (2.18)

where p(xij) = 1
1+exp (−H(xij)) denotes the probability of xij being positive. The rationale

for the NOR model is that the probability of a bag being positive is high if at least one of
the instances has high positive probability. Viola et al. [99] used MILBoost in a cascade
detection procedure for object detection.

2.1.2 Methods Encoding Non-Standard MI Assumptions

In recent years, more general MIL algorithms have been developed to address non-standard
multi-instance assumptions.

ALP-SVM

ALP-SVM [40] is an extension to the AL-SVM and AW-SVM methods explained before. In
fact, the experiments in [40] showed that although AL-SVM and AW-SVM find better local
minima compared to mi-SVM and MI-SVM, but they do not always yield better test error.
This suggests that probably the objective functions do not adequately describe the problem.
Especially, it was observed that AL-SVM algorithm underestimates the number of positive
instances in the positve bags. To come up with this problem, Gehler and Chapelle [40]
proposed a new objective function, which controls the expected number of positive instances
in the bags. This function is obtained by extending the mi-SVM objective function as
follows:

L′T (w, b, yij , ξij) = LT (w, b, yij , ξij) + C2
∑
i

∑
j

yij + 1
2 −mip

∗
i

2

, (2.19)

where p∗i determines the ratio of positive labeled instances in a bag, and mi denotes the
total number of instances in the bag. In fact the new additional term penalizes deviation
of the ratio of positive labeled instances in the bag from p∗i . Note that for all positive bags
p∗i is set to the same prefixed value (which can be estimated by cross-validation), and for
all negative bags it is set to 0. This objective function can be optimized by deterministic
annealing, similar to AL-SVM. In this case, after taking the expectation, the new term
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is translated into C2
∑
i

(∑
j pij −mip

∗
i

)2
. The experimental results show that ALP-SVM

outperforms the other SVM formulations of MIL in most cases.

MIL-CPB

Li et al. [67] proposed MIL-CPB, an algorithm for multi-instance learning with constrained
positive bags. This model extends the MI assumption of positive bags from “at least one
instance is labeled positive” to “at least a portion of instances are labeled positive” (i.e.,
ratio-constrained MI assumption). The formulation of MIL-CPB is similar to other MIL
SVM formulations but with squared bias penalty and squared hinge loss function:

min
yij ,w,b,ρ,ξij

1
2

‖w‖2 + b2 + C
∑
ij

ξ2
ij

− ρ
st. yij = −1, ∀i|Yi = −1∑

j

yij + 1
2 ≥ σ|Xi|, ∀i|Yi = 1

yij(w.φ(xij) + b) ≥ ρ− ξij , ξij ≥ 0, ∀i, j,

(2.20)

where σ specifies the least proportion of positive instances in a positive bag and φ(x) is a
mapping function which maps x into another probably higher dimensional space. The dual
form of this optimization is written as

min
y

max
α∈A
−1

2α
′
(

K̃� yy′ + 1
C

I
)
α, (2.21)

where y = [y1, · · · , yn] is a vector constructed by concatenating all instance labels of all
training bags, α = [α1, · · · , αn] is the vector of dual variables, A = {α|αi ≥ 0,

∑
i αi = 1}

denotes the feasible set of α, I is the identity matrix, and K̃ = K + 1n×n where K is
the kernel matrix corresponding the mapping function φ(.). This is a hard mixed integer
programming problem. However, it is proved in [30] that the lower bound of the objective
value of this problem is the optimal objective value of the following problem:

min
d∈D

max
α∈A
−1

2α
′

∑
yt∈Y

dt K̃� ytyt′ + 1
C

I

α, (2.22)

where d is a vector of new dual variables (dts) with the feasible space of D = {d|dt ≥
0,
∑
t dt = 1} and yt is any solution in the set of all feasible solutions Y. This problem can

be assumed as a multiple kernel learning (MKL) optimization problem, with the base kernels
K̃� ytyt′ ,∀yt ∈ Y. However, |Y| and consequently the number of kernels is exponential in
size, and learning with standard MKL solvers such as SimpleMKL [84] is not tractable. To
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come up with this problem, Li et al. proposed a cutting-plane algorithm to find a subset
C ⊂ Y of feasible solutions which can adequately approximate the original problem. It is an
iterative algorithms that alternates between (1) optimizing α and d using SimpleMKL given
the current approximate set C and (2) adding a new yt to C by enumerating all possible
labeling candidates of the instances in the positive bags. Note that this algorithm can be
computationally expensive if the bags contain many instances.
∝SVM [118] is a similar algorithm for learning from instance labels proportions. This

method follows a SVM-based formulation, where the instance labels are modeled as latent
variables with constraints on the positive label proportion. Yu et al. [118] proposed two al-
gorithms to learn the model: (1) alternating optimization of the mixed-integer programming
problem and (2) convex relaxation of the objective function.

Despite successful results of the algorithms above, almost all of them use some kind
of heuristics or relaxation and consequently provide approximate solutions to the general
problem of multi-instance learning based on label proportions and lack solid mathematical
proof of convergence. In addition, they are limited to specific cardinality assumptions (e.g.
ratio-based assumptions) and to capture new cardinality relations between the instance
labels the proposed models or learning algorithms should be modified.

2.1.3 Methods based on Probabilistic Graphical Models

Probabilistic graphical models (PGMs) are powerful tools to capture inter-relations between
random variables and learn structured models. Thus, they can be assumed a natural fit
to model multi-instance problems. Note that although we have categorized PGM-based
methods as instance-space methods, but these methods also fall close to the boundaries of
bag-space methods. In fact, in PGMs, both instance-level local information and bag-level
global information can be modeled and mixed. However, since the base of these models is
built on the instances, and the first-level discrimination lies in the instance space, we think
that PGM-based MIL methods are mostly (not always) closer to instance-space methods.

MIL with Structured Bag Models

Warrel and Torr [109] developed an algorithm for multi-instance learning with structured
bag models. These models can capture spatial relations or interactions between instances
of a bag and alleviate the assumption that instances of a bag are independent. To this end,
Warrel et al. use CRFs to model the bag structures and at the same time incorprate the
MIL constraints.

Three structured bag models have been studied in this work. The first model shown
in Figure 2.1a considers unary and pairwise potentials on the instances and a hard MIL
constraint on the instance labels. The hard MIL constraint embeds the standard MI as-
sumption that a bag is positive if at least one of the instnaces is positive. In this model,
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(c) Two-level MIL model

Figure 2.1: Graphical representation of the structured bag models in [109].

X = {x1, · · · ,xm} denotes the bag, h = {h1, · · · , hm} denotes the collection of instance
labels and Y is the bag label. The energy function for this bag model is defined as

E1(h, Y |X) = Ebase(h|X) + φhard-MIL(h, Y ), (2.23)

where the base energy function is given by

Ebase(h|X) =
∑
j

φunary(xj , hj) +
∑

j1,j2∈N
φpair(hj1, hj2), (2.24)

and the MIL constraint is described by

φhard-MIL(h, Y ) =

0 if maxj hj = Y

∞ o.w.
(2.25)

The second model shown in Figure 2.1b is similar to the first model except that a soft
and more general MIL constraint is incorporated in the model. This constraint controls the
ratio of positive instances by introducing continuous bag labels σ ∈ [0, 1]. The energy of
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this model is characterized by

E2(h, σ|X) = Ebase(h|X) + φsoft-MIL(h, σ), (2.26)

where the soft MIL constraint

φsoft-MIL(h, σ) = g(σ.m−
∑
j

hj), (2.27)

is defined based on a distance function g(.) (e.g. l1-distance or l2-distance), which penalizes
the deviation from the expected number of positive instances.

The third structured model shown in Figure 2.1c is a combination of the two models
above. It is a two-level model. At the top, there is a continuous bag label σ, which interacts
with the binary instance labels in the first level h1 according to the soft MIL constraint
in (2.27). At the same time, the first level labels h1 form a set of hard sub-bag labels
for a subset of instances in the second level. This model can be used in applications like
semi-supervised multi-level segmentation. For example, at the first level we have the patch
labels and in the second finer level we have the pixel labels. The energy function for this
bag model is given by

E3(h1,h1, σ|X1,X2) =Ebase(h1|X1) + Ebase(h2|X2)

+ φsoft-MIL(h1, σ) +
∑
j

φhard-MIL(h2
j , h

1
j ),

(2.28)

where h2
j is the subset of instance labels in the second level which is associated with the

instance label h1
j in the first level.

To use these models for MIL, we should solve the following two problems.

•. Inference: The inference problem is to minimize the energy function of the bag
models:

(h?, Y ?) = arg min
h,Y

E (2.29)

Inference of the first model is simple. If the bag label y is not observed, the instance
labels are found by h? = arg minh,y Ebase using graph-cut. Next, the bag label is
inferred as Y ? = maxj x?j . However, if the bag label is known, inferring the instance
labels is a bit more tricky. For the case Y = 0 inference is still simple and h? = 0.
Also, if Y = 1 and the graph-cut on Ebase returns at least one positive instance label,
there is no problem. However, if Y = 1 and graph-cut on Ebase returns h? = 0, then
we should perform graph-cut m times by forcing one of the instances be positive at
each time and take the solution with the lowest energy. Inference of the second and
third models is harder and performed approximately by dual decomposition.
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•. Learning: For learning these models, deterministic annealing (DA) is used to mini-
mize an objective function similar to negative log-likelihood:

(θ?,h?i ) = arg min
θ,hi

∑
i

− log (P (hi, Yi|Xi, θ)), (2.30)

where θ represents the set of model parameters. Using DA approach, the objective
function is transformed to

(θ?, π?) = arg min
θ,πi

∑
i

∑
hi

−πi log (P (hi, Yi|Xi, θ))− T
∑
i

H(πi), (2.31)

where πi ≡ π(hi) introduces a probability distribution over the instance labels of a
bag and H is the entropy function. Following the DA approach, optimization starts
with a large T and it is reduced gradually, while for each T , θ? and π? are found
using an iterative algorithm of alternating between optimizing θ and π given the
other one fixed. However, these optimization problems are very hard to be solved or
intractable if the actual CRF probability distribution P (hi, Yi|Xi, θ) = exp(−E)/Z
is used. The reason is that estimation of the partition function Z is NP-hard, and
also each distribution πi is growing exponentially with the bag size. To come up with
a tractable solution, Warrel and Torr proposed to replace the CRF joint probability
distribution by P ′(hi, Yi|Xi, θ) = P ′(Yi|Xi, θ)P ′(hi|Yi,Xi, θ). It is shown that the new
factorization and proper parameterization of P ′(Yi|Xi, θ) and P ′(hi|Yi,Xi, θ) can solve
the both above-mentioned problems. Especially, using this probability distribution
causes the instances become independent given the model parameters θ and the bag
labels. So, the optimal distribution over instance labels factorizes as π?i =

∏
j π

?
ij ,

and consequently each π?ij can be found independently by solving a series of convex
optimization problems in parallel. Note that for the soft labels σi in the second and
third Models, a similar learning procedure is used after quantizing σ into a number
of levels, which acts as hard labels for the bags.

MI-CRF

Deselaers and Ferrari [23] proposed MI-CRF. In this method, the bags are modelled as
nodes in a CRF, where each node can take one of the instances of the bag as its state. So,
the bags are jointly trained and classified in this model. The model uses instance classifiers
as unary terms and dissimilarity measures between the witness instances as pairwise terms.
Thus, bag classification can be improved by using other MIL-based instance classifiers and
integrating information from all bags.
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Set Restricted Boltzmann Machines

Louradour and Larochelle [71] proposed extensions of restricted Boltzmann machines (RBMs)
for classifying sets. This method can be also applied to MIL data. A standard RBM con-
sists of two layers. One layer of observations (visible layer) and one layer of hidden units
(hidden). In the proposed method, RBMs are extended by duplicating the visible and hid-
den layers for each instance. The basic idea is to encode the bag label besides the instance
input vectors in the visible layer and adding constraints on the hidden layer. At the test
time, the predictions is performed by comparing the likelihood of all possible labels.

Generative Graphical Models for MIL

Adel et al. [1] proposed a general framework to use generative graphical models in the MIL
paradigm. This framework studies and analyzes different Bayes net structures for MIL.
For example, in one structure the bag label generates all instance labels and then each
instance label generate the instance feature vector independently. In another structure,
this generation flow is reversed. For training, an expectation-maximization algorithm is
used, which alternates between estimating the model paramters and inferring the instance
labels.

2.2 Bag-Space Methods

Bag-space methods treat each bag as a whole entity and train a classifier directly on the bags
by making a global representation of bags or extracting discriminative bag-level information
from them. In this section, we briefly explain these methods, classified in three main
subcategories: “embedded-space” methods, "kernel-based" methods, and "distance-based"
methods.

2.2.1 Embedded-Space Methods

The methods described in this section transform MIL problem to a standard classification
problem by mapping the bags into an embedded single-instance space. First, each bag is
mapped to a single feature vector by a mapping function. Next, a single-instance classifier
is trained in the embedded space.

Simple MI

Simple MI [29] is a very simple and fast algorithm. In this algorithm, each bag is mapped
to the average of its instances. The averaging can be performed by arithmetic mean or
geometric mean. Then, any standard single-instance classifier can be trained for bag clas-
sification. Although this algorithm is very simple, but surprisingly it has shown successful
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results in some MIL data set (e.g. data sets which have positive bags with many positive
instances, i.e., have less instance-label ambiguity).

Histogram-Based Methods

Histogram-Based Methods [5] works similar to bag-of-words (BOW) methods by mapping
each bag to a histogram vector, using a vocabulary. First, a vocabulary of concepts (or
words) is obtained by hard or soft clustering of all instances in the training bags. Next,
each bag X is mapped to a histogram vector v = (v1, · · · , vK) with

vk = 1
Z

∑
xj∈X

fk(xj), (2.32)

where fk(xj) ∈ [0, 1] is a function which specifies membership of the instance xj in the kth
concept of the vocabulary according to hard or soft-assignment of the clustering algorithm.
In the hard-assignment, vk counts the number of instances of the bag, which are assigned
to the kth concept. However, in the soft-assignment vk is the sum of membership value of
all the instances in that concept. Z is a factor which normalizes the histogram vector such
that

∑
k vk = 1.

Note that (2.32) can be simply modified to model some new MI assumptions such as
presence-based assumption, threshold-based, and count-based assumption [33]. For presence-
based assumption, we can replace the sum in (2.32) with a max function. Thus, a concept
is said to be positive if at least one instance of the bag is present in that concept. For the
threshold-based assumption, the sum is replaced by a threshold function. This means that
a concept is positive if at least a certain number of instances belong to that concept. A
similar modification takes place for the count-based assumption.

DD-SVM and MILES

DD-SVM [19] and MILES [18] are two algorithms, which combine diverse density (DD)
approach and SVM classification. Both these algorithms use the notion of target points
(instance prototypes) introduced in the DD paradigm (Section 2.1.1) to embed the bags
into a new single-instance feature space. So, any single-instance classifier (e.g. SVM here)
can be used to classify positive and negative bags.

First, given the target points (x1,x2, · · · ,xt), each bag Xi is converted to a vector as
follows:

φ(Xi) =


s
(
x1,Xi

)
s
(
x2,Xi

)
...

s
(
xt,Xi

)

 , (2.33)
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where s (x,Xi) = minj ‖xij − x‖2w in DD-SVM, and s (x,Xi) = maxj exp
(
−‖xij−x‖2

w
σ2

)
in

MILES. Using the embedded bag-level feature vectors, a standard L2-norm SVM classifier
is trained in DD-SVM. However, in MILES, an L1-norm SVM is used. L1 regularization
leads to an SVM with a sparse weight vector. So, L1-norm SVM can be employed for both
feature selection and classification. As a result, Chen et al. [18] proposed to construct the
vector in (2.33) by all the instances of the positive bags as target points, and let the L1-norm
SVM choose the most effective instances. They reported that this approach improves final
classification accuracy although the computational cost is reduced.

2.2.2 Kernel-Based Methods

Kernel-Based Methods work by defining kernels on the bags. As a result, any standard
kernel machine can be used for classification. Note that kernel-based methods also works by
performing an implicit space transformation and mapping. Thus, it might be also possible
to categorize kernel-based methods as a type of embedded-space methods. However, to have
more clear and focused presentation, we dedicate a distinct section for these methods.

Multi-Instance Kernels

Gartner et al. [39] introduced a class of multi-instance (MI) kernels, which are defined
directly on the bags. In this approach MIL problems can be solved by plugging the proposed
MI kernels into SVM or other kernel machines. These kernels are inspired by the set kernels
in [38] and [51]. Given two sets X, X′, a set kernel kset is defined by

kset
(
X,X′

)
:=

∑
x∈X,x′∈X′

k
(
x,x′

)
. (2.34)

It is proved that kset is a kernel (i.e., has all properties of a kernel) if and only if k is a
kernel. Based on the set kernel, Gartner et al. proposed an MI kernel

kMI

(
X,X′

)
:=

∑
x∈X,x′∈X′

kpI
(
x,x′

)
, (2.35)

where X, X′ are two bags and kpI is an instance-level kernel kI raised to the power of p. Since
products of kernels are kernels, kpI is also a kernel, and consequently kMI is a variant of the
set kernel in (2.34). Gartner et al. showed that for sufficiently large p, kMI can separate a
standard MI concept1 into positive and negative sets if and only if the underlying instance-
level concept is separable by kI . Note that kset in (2.34) and kMI in (2.35) are biased

1A standard MI concept νMI is defined based on the standard MI assumption on an underlying instance-
level concept νI , i.e., a bag is positive if and only if there is at least one positive instance in the bag.
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towards the bags with large cardinality. So, in practice these kernels are normalized, e.g.,

kMI

(
X,X′

)
:= kMI (X,X′)√

kMI (X,X)
√
kMI (X′,X′)

. (2.36)

An interesting point about the MI kernel in (2.35) is that it can be rewritten as

kMI

(
X,X′

)
:=

∑
x∈X,x′∈X′

φI(x)φI(x′) =
(∑

x∈X
φI(x)

) ∑
x′∈X′

φI(x′)

 , (2.37)

where φI(x) is the underlying feature mapping function of the kernel kpI . Thus, it can be
observed that SVM with kMI corresponds to representing each bag by sum of its instances
in the underlying feature space and applying a standard linear SVM. This shows that the
proposed MI kernel assumes equal weights on all instances of a bag. However, we know
that in positive bags all the instances are not equally important. To alleviate this problem,
later, Kwok and Cheung [58] proposed marginalized MI kernels. These kernels specify
the importance of an instance pair from two bags according to the consistency of their
probabilistic instance labels.

For large bags, the computational complexity of kMI in (2.35) is high. Hence, Gartner
et al. also introduced a simple and more efficient class of kernel functions. The new kernel,
called statistic kernel kstat, uses the statistical properties of the bags to summarize and map
the bags into vectors, which can be compared by standard single-instance kernels:

kstat
(
X,X′

)
:= kI

(
s(X), s(X′)

)
, (2.38)

where s(X) is a mapping which collects some statistics of the set X such as mean, median,
minimum, maximum, etc. An example of this class of kernels is the minmax kernel, which
is defined based on the following mapping

s(X) =
(

min
x∈X

x1, · · · ,min
x∈X

xd,max
x∈X

x1, · · · ,max
x∈X

xd

)
(2.39)

and has been shown to be very successful in some MIL problems (e.g. drug activity predic-
tion).

MIGraph and miGraph

Zhou et al. [121] proposed two graph-based algorithms, MIGraph and miGraph, for multi-
instance learning. Both algorithms work by mapping a bag into an undirected graph and
designing a graph kernel. So, the classification problem can be solved by any kernel machine,
e.g. SVM.

MIGraph constructs a weighted ε-graph for every bag. In this graph, each instance is
modeled as a node, and every two nodes are connected if the Euclidean distance between
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the two instances is less than a preset threshold ε. The weight of each edge is defined by
the normalized reciprocal of non-zero distance of the the two nodes connecting, and is a
notion of affinity between them. Then, given two graphs (i.e. two bags Xi and Xj), a kernel
function is defined as follows:

kG(Xi,Xj) =
ni∑
a=1

nj∑
b=1

knode (xia,xjb)

+
mi∑
a=1

mj∑
b=1

kedge (eia, ejb),
(2.40)

and normalized to

kG(Xi,Xj) = kG(Xi,Xj)√
kG(Xi,Xi)

√
kG(Xj ,Xj)

, (2.41)

where ni and mi indicates the number of nodes and edges in a graph, respectively. The
node kernel knode and the edge kernel kedge can be defined as any positive semidefinite
single-instance kernels such as Gaussian RBF kernel. However, kedge is more tricky because
we need to define a feature vector (i.e. eia) for each edge of the graph. Zhou et al. define the
edge feature vector between the nodes xiu and xiv as [du, pu, dv, pv], where du denotes the
degree of the node xiu, i.e., the number of edges connected to that. pu shows the importance
of connection to the node xiv for the node xiu and defined as pu = wuv/

∑
wu,∗, where wuv

is the weight of the edge between xiu and xiv. Likewise, dv and pv are defined for the node
xiv.

The complexity of computing the kernel kG(Xi,Xj) in MIGraph is O (ninj +mimj),
which is costly due to the large number of edges usually existing in the constructed graph.
Thus, Zhou et al. propose miGraph, which is more computationally efficient. miGraph
implicitly maps a bag to a graph by constructing the affinity matrix (W i) of the graph.
First a Gaussian distance is computed between every two pairs of instances (nodes). By
comparing the distance of each pair (e.g. xia and xiu) with a threshold δ, the correspond
element of the affinity matrix (e.g. wiau) is set to 1 or 0. Next the graph kernel is defined as

kg(Xi,Xj) =
∑ni
a=1

∑nj

b=1WiaWjbk (xia,xjb)∑ni
a=1Wia

∑nj

b=1Wjb

, (2.42)

where Wia = 1/
∑ni
u=1w

i
au, Wjb = 1/

∑nj

v=1w
j
bv, and k (xia,xjb) is a positive semidefinite

instance kernel. The intuition behind this kernel is that the instances which form a clique in
the graph are treated fairly equally and consequently kg implies a notion of soft clique-based
graph kernel. The computational complexity of this kernel is O(ninj), which is independent
of the number of edges.
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2.2.3 Distance-Based Methods

A class of MIL algorithms uses distance metrics to classify bags. The distance can be a
bag-to-bag (B2B) distance or a class-to-bag (C2B) distance. Also, the distance metric can
be fixed or learned from training data.

Citation kNN

Wang and Zucker [107] proposed Citation kNN, which modifies the popular kNN classifica-
tion to MIL. First the B2B distance between each pair of bags is computed by the minimum
Hausdorff distance:

D(Xi,Xi′) = min
xij∈Xi

min
xi′j′∈Xi′

‖xij − xi′j′‖. (2.43)

Next, following the typical kNN appraoch, the class label of an unlabeled bag can be pre-
cidted by majority voting among bag label of its nearest neighbors. However, Wang and
Zucker argued that this approach does not achieve satisfactory results in the multi-instance
paradigm. The reason is the large number of negatives in the positive bags, which can
mislead class prediction based on minimum Hausdorff distance. To alleviate this problem,
Wang and Zucker [107] proposed to classify a bag X by majority voting among both “refer-
ences” and “citers” of X. In this setting, references of X are the nearest neighbors of X (the
same as previous), but citers of X are those bags which count X as one of their neighbors.
The experimental results have shown that this approach improves the robustness against
outlier instances and increases classification accuracy.

Metrics Enhanced Class-to-Bag Distance (M-C2B)

Wang et al. [104] proposed an algorithm to learn a robust and discriminative class-to-bag
(C2B) distance for MIL. Unlike the MI distances defined in the similar previous works
(e.g., [102, 42, 103]), the proposed distance is based on not-squared l2-norm distance. It is
well-known that not-squared l2-norm distance is robust againts outliers [77], which makes
it suitable for MI data, where the outlier instances abound because of label ambiguity in
positive bags.

This algorithm can be used for multi-class multi-label MIL. So, each bag label is denoted
by a vector Yi = [Yi1, · · · , YiK ], where Yik = 1 if bag Xi belongs to the kth class. According
to standard multi-class MI assumption, a bag is assigned to the kth class if at least one of
the instances is from the kth class. Given the training bags X = {Xi, Yi}Ni=1, the M-C2B
distance is proposed as follows. First each class is represented as a super-bag, collecting all
instances of the training bags: Ck = {xij |i ∈ πk}, where πk = {i|Yik = 1}. Then, given an
elementary instance-to-bag distance

dk(xij ,Xi′) = ‖xij −Ni′(xij)‖, (2.44)
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which is described as the distance from the instance xij to its nearest neighbor in the bag
Xi′ (i.e., Ni′(xij)), the class-to-bag distance is defined as

D(Ck,Xi′) =
∑

xij∈Ck

dk(xij ,Xi′). (2.45)

However, instead of using Euclidean distance in (2.44), Wang et al. proposed to use
Mahalanobis distance with a class-specific distance metricMk in order to model the second-
order interactions between input feature vectors. Thus, the proposed M-C2B distance is
rewritten as

D(Ck,Xi′) =
∑

xij∈Ck

√
[xij −Ni′(xij)]>Mk[xij −Ni′(xij)]. (2.46)

For learning the distance metrics Mk, the following optimization problem should be
solved for each class:

min
Mk

∑
i′∈πk

D(Ck, Xi′)∑
i′ /∈πk

D(Ck, Xi′)
(2.47)

This problem tries to minimize the M-C2B distance from a class to all its bags, while
maximizing the distance to all bags of the other classes. If the size of feature vector is large
(which is the case in most MI data sets), the cardinality of Mk ∈ Rd×d is very high and
the search space is huge. A popular trick to compress the problem is to take advantage of
the semi-definite property of Mk and decompose it as Mk = UkU

>
k , where Uk ∈ Rd×r and

r � d. Finally, the optimization problem takes the form

min
Uk

∑
i′∈πk

‖[xij −Ni′(xij)]>Uk‖2∑
i′ /∈πk

‖[xij −Ni′(xij)]>Uk‖2
. (2.48)

It can be shown that the optimization in (2.48) can be rewritten in a vectroized compact
general form as

min
Uk

‖AkUk‖2,1
‖BkUk‖2,1

=
∑
p ‖a

p
kUk‖2∑

p ‖b
p
kUk‖2

, (2.49)

where ‖M‖2,1 indicates the l2,1-norm of the matrix M, i.e., ‖M‖2,1 =
∑
p ‖mp‖2, where

mp is the p-th row of M. In fact, this optimization problem is a general l2,1-norm minmax
problem. Wang et al. [104] proposed an efficient iterative algorithm to solve this problem.

2.3 Summary and Conclusions

In this chapter we reviewed a varity of MIL applications and algorithms. MIL has been
successfully applied to visual recognition tasks such as image classification, image retrieval,
object detection, video classification, and unconstrained video event detection. We also
categorized the MIL algorithms in two main paradigms: instance-space methods and bag-
space methods. In the instance-level paradigm, an instance-level classifier is trained to
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classify positive and negative instances, and based on these classifiers a bag-level classifier
is obtained. However, in the bag-level paradigm, a classifier is trained directly on the bags
by extracting discriminative bag-level information from them.

A summery of the algorithms reviewed in this chapter is presented in Table 2.1. This
table also provides the MI assumption used in each method. According to the standard MI
assumption a bag is labeled positive if at least one of the instances in the bag is positive.
Ratio-based assumptions refer to any assumption which is based on the proportion of posi-
tive/negative instances in a bag. The ratio-constrained assumption is a special ratio-based
assumption, which states a bag is positive if at least a certain ratio of the instance are pos-
itive. In fact, the ratio-constrained assumption is a generalized version of the standard MI
assumption. Metadata assumption is used by convention to refer to the assumption used in
embedded-space and kernel-based bag-level methods [33]. This assumption originates from
the fact that in these methods classification is performed in a metadata embedding space2.

in Table 2.1, we also summarize our proposed models. MIRealBoost is a boosting
framework for MIL, which can softly explore different levels of ambiguity using linguistic
aggregation functions with different degrees of orness. Hence, the notion of positive bag is
extended to a wider and more intuitive range of assumptions. The proposed algorithm is
inspired by the ideas in the MILBoost [99] and RealBoost [34] algorithms. In summary,
this algorithm maximizes the expected likelihood of training bags, where the bag likelihood
is estimated by aggregating the likelihood of instances. In our second method, we propose
multiple instance cardinality models. These are latent probabilistic graphical models which
can integrate instance-level and bag-level interrelations in a bag and at the same time encode
any cardinality relations on instance labels. Hence, they provide a unified framework for
MIL, which addresses all major issues discussed in Chapter 1. To train these models, we
propose novel algorithms based on max-margin classification, kernel learning, and gradient
boosting.

Table 2.1: A list of some well-known MIL methods

Method Summery of the algorithm Base Discrimina-
tion Level

Multi-instance
assumption

Axis-Parallel
Rectangles [25]

Finding a hyper-rectangle that maximizes the
number of positive bags which have at least
one instance in this region, but excludes in-
stances of negative bags as much as possible.

Instance space Standard assumption

Diverse
Density [75]

Estimating the probability of instances based
on distance from an instance prototype, which
is close to at least one instance of every posi-
tive training bag but far from instnaces of all
negative training bags.

Instance space Standard assumption

Continued on next page
2Note that the mapping is explicit in embedded-space methods and implicit in kernel-based methods
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Table 2.1 – Continued from previous page
Method Summery of the algorithm Base Discrimina-

tion Level
Multi-instance
assumption

EM-DD [120] Using expectation-maximization to maximize
the diverse density function.

Instance space Standard assumption

mi-SVM [6] Maximizing the instance margin jointly over
the latent instance labels, using an iterative
algorithm.

Instance space Standard assumption

MI-SVM [6] Maximizing the bag margin in an iterative pro-
cedure, where at each iteration every positive
bag is represented by the most postive instance
of the bag.

Instance space Standard assumption

sMIL, stMIL
[12]

sMIL modifies miSVM constraints to be more
effective for sparse positive bags. stMIL is the
transductive SVM version of sMIL.

Instance space Standard assumption

AL-SVM,
AW-SVM,
ALP-SVM [40]

Optimizing mi-SVM and MI-SVM objective
functions with deterministic annealing.

Instance space Standard assumption
for AL-SVM & AW-
SVM. Ratio-based for
ALP-SVM.

MI-Forests [63] Optimizing a confidence maximizing loss func-
tion over randomized trees, using an iterative
DA-based method.

Instance space Standard assumption

MILBoost [99] Maximizing the log likelihood of training bags
using AnyBoost framework.

Instance space Standard assumption

MIL-CPB [67] Optimizing SVM-like objective functions with
ratio-based MIL constraints for the positive
bags, using an iterative cutting plane algo-
rithm.

Instance space Ratio-constrained
assumption

∝SVM [118] Solving a max-margin mixed-integer optimiza-
tion problem, given predetermined instance
label proportions, following alternating opti-
mization or convex relaxation.

Instance space Ratio-based assump-
tion

MI-CRF [23] Using a CRF where each node represents a bag
which can take one of its instance as the value.
In this model, all the bags are jointly classified
based on unary instance classifiers and pair-
wise dissimilarity measurements

Instance space Standard assumption

Structured Bag
Models [109]

Using CRFs to model the bag structures and
at the same time incorporating different MIL
constraints. Learning is performed by mini-
mizing an objective function with determinis-
tic annealing approach

Instance space Standard and Ratio-
based assumptions

SetMaxRBM
[71]

Extending restricted Bltzman machines
(RBMs) to classify general sets of data

Bag space No assumption

Generative
Models for
MIL [1]

Using Bayesian networks with different struc-
tures to learn generative models for MIL

Instance space Standard assumption

Continued on next page
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Table 2.1 – Continued from previous page
Method Summery of the algorithm Base Discrimina-

tion Level
Multi-instance
assumption

Simple MI [29] Mapping each bag to average of its instances
and training a standard single-instance classi-
fier.

Bag space Metadata assumption

Histogram-
Based Methods
[5]

Finding a vocabulary of concepts by clustering
the instances. Then, mapping each bag to a
histogram vector of the concepts and finally
train a single-instance classifier.

Bag space Metadata assumption

DD-SVM [19]
& MILES [18]

Mapping each bag to a vector built by the
distances between the bag and instance proto-
types of the DD algorithm. Next, classifying
the vectors by the regular SVM (in DD-SV) or
1-norm SVM (in MILES).

Bag space Metadata assumption

MI kernels [39] Defining a number of MI kernels on bags and
plug them into kernel methods.

Bag space Metadata assumption

miGraph &
MIGraph [121]

Mapping a bag into an undirected graph and
designing a graph kernel. Next, classifying the
bags by a kernel machine.

Bag space Metadata assumption

Citation kNN
[107]

Using a bag-to-bag distance in a modified near-
est neighbor appraoch, where each bag is clas-
sified by majority voting among both citers
and references.

Bag space Nearest neighbor as-
sumption (with B2B
distance)

M-C2B [104] Learning a robust and discriminative class-to-
bag (C2B) distance for MIL by solving an l2,1-
norm minmax problem.

Bag space Nearest neighbor as-
sumption (with C2B
distance)

Ours: MIReal-
Boost [47]

Maximizing the expected log likelihood of
training bags, using standard RealBoost algo-
rithm and linguistic aggregation functions.

Instance space Soft linguistic cardinal-
ity codes (e.g. some,
many)

Ours: Cardi-
nality Models

Modeling bags using Markov networks with
parameterized cardinality potentials so that
different cardinality-based MI assumptions can
be plugged into the models or even learned
from data. Three different algorithms are pro-
posed to train these models. First, learning
is formulated as a latent max-margin clas-
sification problem and solved with a non-
convex cutting plane method. Second, a multi-
instance kernel is defined and tuned to classify
these models. Third, a gradient boosting al-
gorithm is introduced to maximize the data
likelihood function.

Instance space +
bag space

Any cardinality-based
assumption + meta-
data assumption of
bag-level features.
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Chapter 3

Multiple Instance Real Boosting
with Aggregation Functions

We introduce a boosting framework for multiple instance learning (MIL) with varied aggre-
gation of instances. In this framework, a diverse set of aggregation functions can be used to
refine the notion of a positive bag for multiple instance learning. We investigate the effect
of a wide range of orness in aggregation, using ordered weighted averaging. Thus, we obtain
a new notion of a positive bag, which can represent different levels of ambiguity in data
and encode a variety of soft multi-instance assumptions. We evaluate the performance of
the proposed algorithm on popular MIL datasets. The experimental results show that this
algorithm outperforms the standard MILBoost algorithm.

3.1 Overview

Multiple instance learning (MIL) is used to handle ambiguity in weakly supervised data.
In MIL, training data are presented in positive and negative bags instead of individual
instances. A positive bag label means that it contains at least one positive example, while in
a negative bag all the instances are negative. The ambiguity in the examples is passed on to
the learning algorithm, which should incorporate the information to find a suitable classifier.
MIL has been extensively used in different applications, especially vision tasks. It has been
successfully used to train classifiers for object detection [99], image categorization [18],
image retrieval [67, 30], and object tracking [8] from weakly annotated data. For example,
Viola et al. [99] use MIL to model imperfection in positive labels for face detection – a bag
consists of a set of windows centered around a ground-truth face location. At least one
of these windows should be a good ground truth face. Chen et al. [18] employ a diverse
density (DD) function to map the instances of a bag into a bag-level feature vector. Then,
the important features are chosen by L1-norm SVM and used for image categorization.
Gehler and Chapelle [40] approach MIL with SVMs, using deterministic annealing based
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optimization. They also claim that different levels of ambiguity in bags can influence the
performance of MIL-based methods. Hence, in their proposed algorithm they provide the
possibility to encode prior knowledge about the dataset (i.e., fraction of positives in a
bag). Bunescu and Mooney [12] use the framework of transductive SVMs to propose a
MIL algorithm for sparse positive bags. They show that this algorithm is very effective
for the tasks where there are few positive instances in the positive bags (e.g., image region
classification). Duan et al. [30] and Li et al. [67] formulate text-based image retrieval as
a MIL problem by treating the relevant and irrelevant clustered images as positive and
negative bags. To come up with this problem, they introduce a generalized multi-instance
assumption, where a positive bag contains at least a certain portion of positive instances.
They use a SVM formulation with new constraints on instance labels of the bags to develop
algorithms, which tackle the ambiguities in the instances.

In this work, we propose a novel algorithm called MIRealBoost to train a multi-instance
classifier. The main advantage of our framework is that a diverse set of aggregation functions
are introduced to encode various multi-instance assumptions and deal with different levels
of ambiguity in the bags. Our notion of positive bag can range from at least one instance
in the bag is positive to all instances are positive. This is different from algorithms such
as [40, 30, 67], which need prior knowledge about exact fraction of positives inside bags.
Instead, our proposed framework can roughly extract this knowledge by exploring different
aggregation functions and directly optimizes the expected data likelihood to train the bag
classifier. In addition, this algorithm has the general advantages of boosting algorithms like
simple programming, few parameters for tuning, and ability of feature selection.

The rest of this chapter is organized as follows. Section 3.2 describes our framework
of multiple instance learning with aggregation functions. In particular, ordered weighted
averaging and the proposed MIRealBoost algorithm are explained in this section. In Section
3.3 the experiments are presented, and MIRealBoost is compared with the state-of-the-art
algoithms. Finally, the conclusions are drawn in Section 3.4.

3.2 Algorithm Design

In the MIL framework, training examples are not singletons. Instead, they are presented
in bags (i.e. sets of instances), where the instances in a bag share a label. Let Xi =
{xi1, · · · , xi|Xi|} denote a bag with |Xi| instances and a binary label Yi ∈ {−1, 1}. The
whole data set is represented by {(X1, Y1) , · · · , (XN , YN )}. According to the standard MI
assumption, a positive bag means at least one of the instances in the bag is positive. In
a negative bag, all the instances are negative. Viola et al. [99] introduced the MILBoost
algorithm for standard MIL, based on the AnyBoost framework [76]. This algorithm trains
a boosting classifier which maximizes the log likelihood of the training bags:
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L =
∑
i

1(Yi = 1) log p(Xi) + 1(Yi = −1) log (1− p(Xi)) ,

where p(Xi) is the probability of the ith bag being positive and expressed in terms of its
instances by the Noisy-OR (NOR) model:

p(Xi) = 1−
∏

xij∈Xi

(1− p(xij)) . (3.1)

The rationale for this model is that the probability of a bag being positive is high
if at least one of the instances has high probability. In this section, we propose an algo-
rithm which maximizes the expected log likelihood of training examples based on RealBoost
framework [34] by training a function as the strong classifier for bags of any size. Moreover,
besides the NOR model, we use a class of operators which can express different linguistic
aggregation instructions. Hence, the concept of positive bags is extended to a wider range
of assumptions. For example, a bag might be called positive if a few instances inside the
bag are positive, or some of the instances are positive or half of the instances are positive.

3.2.1 Ordered Weighted Averaging

OrderedWeighted Averaging (OWA) as an aggregation operator was proposed by Yager [113].
OWA is a mapping owa : [0, 1]n → [0, 1], which aggregates a list of arguments A =
{a1, a2, · · · , an}(aj ∈ [0, 1]) with an associated weight vector W = [w1, w2, · · · , wn] (wi ∈
[0, 1],

∑
wi = 1) according to (3.2).

owa (a1, a2, · · · , an) =
n∑
i=1

biwi. (3.2)

Where bi is the ith largest of the aj . OWA can be used to model a spectrum of linguistic
aggregation instructions. The degree of orness or optimism degree (θ) for an OWA operator
denotes its closeness to OR operator and is defined as follows:

θ (w1, w2, · · · , wn) =
( 1
n− 1

) n∑
i=1

((n− i)wi) . (3.3)

Using linguistic quantifiers is one of the approaches used to determine the weights of
OWA operators. Here, we use the regular increasing monotonic (RIM) linguistic quantifier
Q : [0, 1]→ [0, 1] such that Q(0) = 0 and Q(1) = 1. Consequently, the OWA weight vector
is computed based on Q using (3.4).

wi = Q( i
n

)−Q( i− 1
n

). (3.4)
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A popular form is Q(p) = pα, in which α is the parameter to be set. For this function, seven
RIM quantifiers have been suggested [72, 113]: At least one (α → 0, i.e. Max function),
Few (α = 0.1), Some (α = 0.5), Half (α = 1), Many (α = 2), Most (α = 10), All (α→∞),
which we also summarize in Table 3.1.

Table 3.1: Family of RIM qunatifiers and their relevant values of α and θ

Linquistic quantifier α Orness (θ)
At least one of them α→ 0 0.999
Few of them 0.1 0.909
Some of them 0.5 0.667
Half of them 1 0.500
Many of them 2 0.333
Most of them 10 0.091
All of them α→∞ 0.001

3.2.2 Multiple Instance RealBoost

In our proposed MIRealBoost algorithm, we define Hb(X) = sign
(
F b(X)

)
as the strong

classifier of the bag X, where F b(X) is the real-valued confidence (or score) of X being
positive. Given the function F b(X), the binomial probability of a bag being positive is
defined by the logistic function

p(X) = eF
b(X)

eF b(X) + e−F b(X) . (3.5)

Under this model, the binomial log-likelihood will be

l (Y, p(X)) = 1(Y = 1) log p(X) + 1(Y = −1) log (1− p(X))

= − log
(
1 + e−2Y F b(X)

)
(3.6)

Our goal is to maximize the expected log-likelihood E l(Y, p(X)). It is proved in [34]
that the maximizer of this function is p(X) = P (Y = 1|X) or equivalently:

F b(X) = 1
2 log P (Y = 1|X)

1− P (Y = 1|X) . (3.7)

In addition, we know that the probability of a bag can be expressed by aggregation of
the probability of instances inside the bag:

P (Y = 1|X) = aggx∈X(P (y = 1|x)). (3.8)
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Algorithm 1 MIRealBoost algorithm
Input: Training set = {(X1, Y1) , · · · , (XN , YN )}.
Xi = {xi1, · · · , xi|Xi|}, i = 1, · · · , N .
M = number of weak classifiers.
Initialize the weights wpij = 1/

∑
i(|Xi|), the pseudo-labels ypij = Yi, and the confidence of

each instance F (xij) = 0.
for m = 1→M do
for each available feature hk(.), k = 1→ K do
Compute weak classifier of each instance w.r.t. each feature fkm(xij) =

1
2 log

P̂
{hk(xij),y

p
ij

,w
p
ij
}
(hk(xij)|y=1)

P̂
{hk(xij),y

p
ij

,w
p
ij
}
(hk(xij)|y=−1)

Compute the probability of each instance pk(xij) =
e(F(xij)+fk

m(xij))
e(F(xij)+fk

m(xij))+e−(F(xij)+fk
m(xij)) .

Compute the probability of each bag pk(Xi) = aggxij

(
pk (xij)

)
.

Compute the empirical log-likelihood Lk =
∑
i 1(Yi = 1) log pk(Xi) + 1(Yi =

−1) log
(
1− pk(Xi)

)
end for
Set k? = arg maxk Lk.
Set F (xij)← F (xij) + fk

?

m (xij)
Compute confidence of each bag F b(Xi) = 1

2 log pk? (Xi)
1−pk? (Xi)

.
Update wpij ← e−YiF

b(Xi), i = 1, · · · , N , and normalize the weights such that
∑
ij w

p
ij =

1.
end for
Output: The bag-classifier sign

(
F b(X)

)
.

The aggregation function agg can be the NOR model in (3.1) or the OWA operators in
(3.2). On the other hand, if an instance classifier H(x) = sign (F (x)) is trained by the
original instance-level RealBoost algorithm [34], the probability of each instance is given by

P (y = 1|x) = eF (x)

eF (x) + e−F (x) . (3.9)

Therefore, if we know the confidence score of each instance inside the bag X, we can obtain
F b(X) and classify the bag. In the rest of this section, we try to find F (x).

The confidence function of the RealBoost strong classifier is defined as F (x) =
∑M
m=1 fm(x).

At each step of the RealBoost algorithm, the weak classifier fm(x) is obtained by minimizing
the stage-wise expected exponential cost:

E e−y(Fm−1(x)+fm(x)). (3.10)

Setting the derivative w.r.t. fm(x) to zero, it can be shown that the minimizer is

35



fm(x) = 1
2 log Pw (y = 1|x)

Pw (y = −1|x) , (3.11)

where Pw represents the probability distribution of y, given x weighted by w(x, y) =
e−yFm−1(x). Using Bayes’ rule P (y|x) ∝ P (x|y)P (y) with the assumption P (y = 1) =
P (y = −1), we get

fm(x) = 1
2 log Pw (x|y = 1)

Pw (x|y = −1) . (3.12)

In practice, the weak classifier is fit by approximating the class probability functions
using weighted training instances. In our work, the weighted conditional probability func-
tions for the positive and negative class are estimated by kernel smoothing density functions
computed from the weighted voting of training examples. However, we cannot directly use
the original training instances xij to approximate the class probability functions because
we do not have the true label of instances inside positive bags. Indeed, we know xij and
Fm−1(xij), but we do not know yij . On the other hand, we know the confidence of each
bag (i.e. F bm−1(Xi)) and its label (i.e. Yi). Consequently, we define new training pseudo-
instances {xpij , y

p
ij , w

p
ij}, where x

p
ij = xij , ypij = Yi, and wpij = e−YiF

b
m−1(Xi). In fact, we have

assumed uniform distribution over the instances of a bag in order to have all the instances
compete to take part in prediction of the correct bag label. Thus, we finally get

fm(x) = 1
2 log

P̂{xp
ij ,y

p
ij ,w

p
ij}

(x|y = 1)

P̂{xp
ij ,y

p
ij ,w

p
ij}

(x|y = −1)
. (3.13)

Fm(xij) = Fm−1(xij) + fm(xij). (3.14)

Now that we have the confidence of all the instances, we can find the confidence of each
bag by (3.9), (3.8), (3.7) and predict the class label of each bag.

The pseudocode of the proposed algorithm is shown in Algorithm 1. In this algorithm,
each weak classifier is built from only one feature. Hence, the algorithm sequentially selects
the weak classifiers, which maximize the empirical log-likelihood (3.1), from the pool of all
weak classifiers in a stage-wise greedy approach. We found that using redundant features in
computation of weak classifiers led to overfitting. Hence, at each iteration we pick the best
feature among those which have not been used previously. Our experimental results verify
that this approach is resistant to overfitting. In addition, in our experiments we considered
each negative instance as a negative bag since there is no ambiguity about the label of the
instances in a negative bag. Our investigations showed that using the original negative bags
leads to similar results.
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3.3 Experiments

We evaluate MIRealBoost with different aggregation functions on five well-known MIL data
sets. These benchmark datasets are the Elephant, Fox, Tiger image retrieval datasets [6]
and Musk1 and Musk2 drug activity prediction datasets [25]. In the image datasets, each
bag represents an image and the instances inside the bag represent 230-D feature vectors
of different segmented blobs of the image. The image datasets contain 100 positive and
100 negative bags. In the MUSK datasets, each bag describes a molecule, and the in-
stances inside the bag represent 166-D feature vectors of the low-energy configurations of
the molecule. Musk1 has 47 positive bags and 45 negative bags with about 5 instances per
bag. Musk2 has 39 positive bags and 63 negative bags with variable number of instances in
a bag, ranging from 1 to 1044 (average 64 instances per bag).

The classification accuracies for MIRealBoost with different aggregation functions are
shown in Table 3.2. At each trial, we run the algorithm with 40 iterations (i.e. weak
classifiers) for image datasets and 100 iterations for Musk datasets. It can be observed
that for the image datasets NOR has the overall best performance. However, for Musk1
and Musk2 the Many and Half OWA operators outperform the others. The reason might
be that in an image usually one of the segments is the true segment (positive instance).
However, in the Musk datasets, more than one configuration of a molecule might be positive.
In fact, it has been previously reported [40] that Musk1 dataset contains less ambiguity in
positive bags, hence there are many positive instances in each bag. MIRealBoost, our
algorithm, allows for exploring different aggregators for modeling ambiguity in the bags in
order to enhance classification accuracy.

Table 3.2: MIRealBoost classification accuracy with different aggregation functions. Best
methods are marked in bold face

Agg. Elephant Fox Tiger Musk1 Musk2
NOR 83 63 72 85 74
Max 77 58 68 85 74
Few 75 58 70 83 72
Some 75 57 73 85 75
Half 72 54 70 90 77
Many 67 52 67 91 75
Most 54 50 51 83 69
All 50 50 50 84 67

Next, we compare MIRealBoost with MILBoost, which is the closest method in feature
pool, hypothesis space, and structure. Table 3.3 shows that MIRealBoost algorithm always
outperforms MILBoost algorithm. Note that since we run the experiments with the exact
training and test sets1 used in [63], we also report the MILBoost results from this paper.

1These sets are available online at http://www.ymer.org/amir/software/milforests/
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Table 3.3: Comparison between MIRealBoost and MILBoost

Method Elephant Fox Tiger Musk1 Musk2
MIRealBoost 83 63 73 91 77
MILBoost 73 58 56 71 61

Finally, comparison of the best aggregator for MIRealBoost with the state-of-the-art
MIL methods is provided in Table 3.4. It can be observed that the performance of the
methods varies depending on the dataset. However, MIRealBoost is comparable to the best
methods in most cases (Elephant, Fox, and Musk1).

Table 3.4: Comparison between state-of-the-art MIL methods. Best methods are marked
in bold face

Method Elephant Fox Tiger Musk1 Musk2
MIRealBoost 83 63 73 91 77
MIForest [63] 84 64 82 85 82
MI-Kernel [6] 84 60 84 88 89
MI-SVM [6] 81 59 84 78 84
mi-SVM [6] 82 58 79 87 84
MILES [18] 81 62 80 88 83
SIL-SVM [12] 85 53 77 88 87
AW-SVM [40] 82 64 83 86 84
AL-SVM [40] 79 63 78 86 83
EM-DD [120] 78 56 72 85 85
MIGraph [121] 85 61 82 90 90
miGraph [121] 87 62 86 90 90

3.4 Conclusion

We proposed a novel framework for MIL based on boosting that can model a wide range of
soft multi-instance assumptions and deal with different levels of ambiguity in data. Hence, it
is more robust to the amount of ambiguity (i.e. true positive instances) in positive bags. To
this end, we used OWA operators, which can represent different degrees of orness in aggre-
gation. Experiments on standard MIL datasets showed that encoding degree of ambiguity
in the classifier can influence the accuracy of prediction. The proposed MIRealBoost algo-
rithm achieves state-of-the-art results and outperforms the MILBoost algorithm on these
datasets.
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Chapter 4

Multiple Instance Classification by
Max-Margin Training of
Cardinality-Based Conditional
Random Fields

We propose a probabilistic graphical framework for multiple instance learning (MIL) based
on conditional random fields (CRFs). This framework can deal with different levels of la-
beling ambiguity in weakly supervised data (i.e., the portion of positive instances in a bag)
by parameterizing cardinality potential functions. Consequently, it can be used to encode
different cardinality-based multi-instance assumptions, ranging from the standard MIL as-
sumption to more general assumptions. In addition, this framework can be efficiently used
for both binary and multiclass classification. To this end, an efficient inference algorithm
and a discriminative latent max-margin learning algorithm are introduced to train and
evaluate the proposed multi-instance CRFs. We study the performance of the proposed
framework on binary and multi-class MIL benchmark datasets as well as two challenging
computer vision tasks: cyclist helmet recognition and human group activity recognition.
Experimental results verify that encoding the degree of ambiguity in data can improve
classification performance.

4.1 Overview

Multiple instance learning (MIL) aims to recognize patterns from weakly supervised data.
Contrary to standard supervised learning, where each training instance is labeled, in the
MIL paradigm a bag of instances share a label. For example in the binary MIL, each bag
of instances is labeled positive or negative. The training data is given as labeled bags,
and the goal is to predict the label of test bags. In the standard binary multi-instance
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sparse positive bags full positive bags…
Training Bags

Figure 4.1: Cyclist helmet recognition using the proposed max-margin cardinality-based
method. The goal is to recognize if the cyclist is wearing helmet or not, given the input
video. Each video is treated as a bag of instances, where each instance is represented by an
automatically detected window around the cyclist’s head. The proposed cardinality-based
models help to control the label proportions in the positive bag and encode a wide range of
multi-instance assumptions.

(MI) assumption, a bag is positive if it contains at least one positive instance, while in a
negative bag all the instances are negative. This ambiguity in the instance labels is passed
on to the learning algorithm, which should incorporate the information to classify unseen
bags. In this chapter we develop a novel framework for MIL, which can model more general
multi-instance assumptions and deal with different levels of labeling ambiguity in the bags.

The standard multi-instance assumption (i.e., at least one of the instances in a positive
bag is positive) is a too weak assumption in many MIL applications. For example, in the
cyclist helmet recognition problem shown in Figure 4.1, the goal is to detect if the cyclist is
wearing helmet given the automatically extracted track of the cyclist’s head position. This
can be modeled as a MIL problem, where the cyclist track is represented as a bag of image
patches extracted around the estimated cyclist’s head position in each frame. Because of
the imperfect tracking, not all instances in a positive bag are positive. However, the positive
instances are not sparse in positive bags, either. In fact, many instances are true positives
and not just additional irrelevant elements in a bag. Using this prior information can help
to train stronger classifiers. Further, because of noisy, occluded, or low-quality feature rep-
resentations, negative bags can also contain instances that are effectively indistinguishable
from positive instances. In these situations more robust multi-instance assumptions are
needed.
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On the other hand, considering and analyzing cardinality-based relations is intrinsic to
some visual recognition problems. For example, in group activity recognition (e.g. [21]) the
prominent approach to analyze the activity of a group of people is to look at the actions of
individuals in a scene. A number of impressive methods have been developed for modeling
the structure of a group activity [61, 20, 4], capturing spatio-temporal relations between
people in a scene. However, these methods do not directly consider cardinality relations
about the number of people that should be involved in an activity. These cardinality re-
lations vary per activity. An activity such as a fall in a nursing home [61] is different in
composition from an activity such as queuing [20], involving different numbers of people
(one person falls, many people queue). Further, clutter, in the form of people in a scene
performing unrelated actions, confounds recognition algorithms.

To address these issues, we develop a general MIL framework to encode various types
of cardinality relations and make a flexible notion of labeled bags. This framework is built
on a latent structured model based on conditional random fields (CRFs) to incorporate
cardinality-based measurements over instances, which can extend from the notion of “at
least one positive” to “at least some positives” to “nearly all positives.” Thus, it can (1)
deal with different levels of ambiguity or clutter in the data and (2) encode various kinds
of cardianlity-based relations/constraints on instances, either predefined by the user or
learned directly from the data. In fact, this framework can be even adapted to estimate the
appropriate MIL notion from training data without prior assumption on the proportion of
positives in the bags.

As explained in Chapter 2, there are some other works [40, 30, 67, 47, 109, 118] which try
to model nonstandard and more general multi-instance assumptions. However, comparing
to the previous works, our proposed method presents the following contributions. First, it
can encode any cardinality-based multi-instance assumption in the bag1. It can even work
without prior assumption on the cardinality of positive instances inside the bags and be
trained to discover this knowledge directly from data. Second, it can be used for both binary
and multi-class classification without converting the multi-class problem to multiple binary
classification problems (e.g., by employing exhustive one-vs-all or one-vs-one appraoches,
commonly used in MIL methods). Third, the inference and learning of the proposed models
is exact and no approximation or heuristics are required. Finally, the proposed model allows
flexible integration of bag-level and instance-level information in a bag, leveraging benefits
from both global and local representations of the bag in both bag and instance spaces. For
example, an image can be jointly represented by local feature vectors extracted from several
regions of interest in the image as well as a global feature vector extracted from the whole
image.

1Although we focus on ratio-based cardinality assumptions in this work, but the proposed model is not
limited to ratio-based assumptions and can be used to encode any cardinality-based assumptions on the
instance labels
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This chapter is organized as follows. Section 4.2 describes our framework of multi-
instance learning with CRFs. In particular, the models for different multi-instance assump-
tions, including the standard MI assumption and more general ratio-based MI assumptions
are described in this section. In Section 4.3 the inference and learning algorithms are ex-
plained. Section 4.4 provides experimental studies on MIL benchmark datasets as well as
cyclist helmet classification and human group activity recognition. We conclude in Sec-
tion 4.5.

4.2 MIL Using Cardinality-Based CRFs

In MIL, training examples are presented in bags where the instances in a bag share a
label. In this section, we use cardinality-based CRFs to model MIL problems and develop a
generalized notion of labeled bags. The proposed CRFs are used to define a scoring function
for bag classification.

4.2.1 The Proposed CRF for MIL

In this section, we firstly introduce the model for binary multi-instance classification and
next extend it for multiclass classification.

Binary Classification

Let B = {I1, · · · , Im} denote a bag with m instances and a binary bag label Y ∈ {−1, 1}.
Each instance Ii is represented by a fixed-length feature vector xi = [xi1, · · · , xiD] ∈ RD.
Likewise, each bag might be globally described by another feature vector X. For example,
if the bag is an image, X can be a global bag-of-words feature vector extracted from the
whole image. Another approach to construct X is using the prediction scores of other MIL
methods2 as a bag-level feature descriptor. Each instance Ii has also a hidden label yi, and
the collective binary instance labels of a bag are denoted by y = {y1, · · · , ym}. Given this
notation, we propose a CRF to define a scoring function over tuples (X,x = {xi}mi=1, Y,y =
{yi}mi=1). This function is used to predict the label of a test bag by inferring the bag and
instance labels which maximize the scoring function, given the feature vectors.

A graphical representation of the proposed cardinality-based CRF is shown in Figure 4.2.
In our framework, we call this CRF the “cardinality model". The components of the proposed
cardinality model are described as follows. Each instance and its label are represented by
two nodes in a clique. The potential function of this clique specifies a classifier for an
individual instance. A second clique contains all instance labels and the bag label. This
clique is used to define what makes a bag positive or negative. Varying this clique potential
will lead to different MI assumptions, and is the focus of our work. Finally, there is an

2In our experiments, we use MI-Kernel [39].
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Figure 4.2: Graphical illustration of the proposed cardinality model for binary multi-
instance learning. Instance potential functions φIw(xi, yi) relate instances xi to labels yi. A
second clique potential φCw(y, Y ) relates all instance labels yi to the bag label Y . There is
also an optional potential function φBw(X, Y ), which relates the global representation of the
bag to the bag label.

optional clique potential between the global representation of the whole bag and the bag
label.

We define the scoring function on these cliques as:

fw(X,x, Y,y) =
∑
i

φIw(xi, yi) + φCw(y, Y ) + φBw(X, Y ), (4.1)

where φIw(xi, yi) represents the potential between each instance and its label, φCw(y, Y ) is
the clique potential over all the instance labels and the bag label, and finally φBw(X, Y )
expresses the potential between the bag-level feature vector and the bag label. Note that
the potential functions are parametrized by the learning weights w. We explain the details
of these potential functions as follows.

Instance-Label Potential φIw(xi, yi): This potential function models the compatibility
between the ith instance feature vector xi and its label yi. It is parametrized as:

φIw(xi, yi) = w>I xi 1(yi = 1)

= w>I ΨI(xi, yi).
(4.2)

Labels Clique Potential φCw(y, Y ): This potential function models the relations be-
tween the instance labels and the bag label. Since the MIL problems are defined based on
the number of positive and negative instances, we need to formulate this as a cardinality-
based clique potential. Cardinality-based potentials are only a function of label counts – in
this case, the counts of the positive and negative instances in the bag.
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By modifying the form of the cardinality-based potential, we can encode different MI
assumptions, which will be shown in Section 4.2.2. Note that while for arbitrary clique
potentials inference could be NP-complete, for cardinality potentials with binary variables
exact and efficient inference algorithms exist. This will lead to efficient algorithms for
learning and prediction, which will be described in Section 4.3.

In order to define the cardinality-based potentials, we will use the notation m+ and m−

for the counts of instance labels in y which are positive and negative, respectively. The
complete clique potential depends on these counts, and the bag label Y . Thus, we describe
this clique potential by parameterizing two different cardinality potential functions, one for
positive bags (C+

w) and one for negative bags (C−w).

φCw(y, Y ) = Cw
(
m+,m−, Y

)
= C+

w

(
m+,m−

)
1(Y = 1)

+ C−w

(
m+,m−

)
1(Y = −1).

(4.3)

Bag-Label Potential φBw(X, Y ): This potential function gives a global model of a bag,
which describes how the bag as a whole entity is classified. It is parametrized as:

φBw(X, Y ) = w>B X1(Y = 1)

= w>B ΨB(X, Y ).
(4.4)

Multiclass Classification

We can extend the binary model in Figure 4.2 for multiclass classification. The proposed
multiclass model is illustrated in Figure 4.3. It can be observed that this CRF is formed
by concatenation of the binary graphical model of each class. The main reason for this
replication is that inference of cardinality clique potentials is exact and efficient only for
binary labels. To this end, first we represent the multiclass bag label Y ∈ {1, 2, · · · , L}
by a binary vector (Y1, Y2, · · · , YL), where Yl = 1 if Y = l, and Yl = −1 if Y 6= l. In
addition, for each class l, we have binary instance labels yl = {yl1, · · · , ylm} (yli ∈ {+1,−1},
i = 1, · · · ,m), indicating which instances are from (or relevant to) the lth class and which
instances are not. We also denote the collection of all instance labels of all classes by y.
Putting all this together, the scoring function of the tuple (X,x, Y,y) for the proposed
multiclass graphical model is defined by:

fw(X,x, Y,y) =
L∑
l=1

(∑
i

φIwl(xi, yli) + φCwl(yl, Yl) + φBwl(X, Yl)
)
, (4.5)
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Figure 4.3: Graphical illustration of the proposed cardinality model for multiclass multi-
instance learning.

where, similar to the binary model, the instance-label potentials φIwl(xi, yli), the labels
clique potential φCwl(yl, Yl), and the bag-label potential φBwl(X, Yl) are defined as follows.

φIwl(xi, yli) = w>Il xi 1(yli = 1)

= w>Il ΨI(xi, yli).
(4.6)

φCwl(yl, Yl) = Cwl
(
m+
l ,m

−
l , Yl

)
= C+

wl

(
m+
l ,m

−
l

)
1(Yl = 1)

+ C−wl

(
m+
l ,m

−
l

)
1(Yl = −1).

(4.7)

φBw(X, Yl) = w>Bl X1(Yl = 1)

= w>Bl ΨB(X, Yl).
(4.8)

The following section defines functions C+
wl and C

−
wl that lead to a variety of MIL models.

4.2.2 The Proposed Cardinality Models of Multi-Instance Classification

In this section, we use our proposed cardinality model to encode different multi-instance
assumptions.

Standard Cardinality Model (SCM)

This CRF models the multi-class multi-instance classification with the standard MI assump-
tion, i.e., a bag of class l has at least one instance from the lth class. Thus, in this model,
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the labels clique potential for each possible class l ∈ {1, · · · , L} is given by

C+
wl(0,m) = −∞ (4.9)

C+
wl(m

+
l ,m−m

+
l ) = w+

Cl m+
l = 1, · · · ,m (4.10)

C−wl(0,m) = w−Cl (4.11)

C−wl(m
+
l ,m−m

+
l ) = −∞ m+

l = 1, · · · ,m. (4.12)

This clique potential states that in a bag of class l it is impossible to have no instance from
the lth class (4.9), and there is the same potential of having one or more than one instance
from the target class (4.10). However, if the bag label is not equal to l, none of the instances
should be from this class (4.11) & (4.12). One could set w+

Cl and w
−
Cl to a constant value

(e.g. 0)3, but we generally treat them as the model parameters and show how to learn them
in Section 4.3.2.

Ratio-constrained Cardinality Model (RCM)

Ratio-constrained MI assumption extends the notion of labeled bags in MIL based on in-
stance labels proportions. In the ratio-constrained cardinality model, each bag of class l
contains at least a certain portion of instances from the lth class. For example, at least
30% of the instances should be from the lth class in a bag with label l. To encode this MI
assumption with our proposed cardinality model, we only need to refine the functions C+

wl
and C−wl:

C+
wl(m

+
l ,m−m

+
l ) = −∞ 0 ≤ m+

l

m
< ρ

C+
wl(m

+
l ,m−m

+
l ) = w+

cl ρ ≤
m+
l

m
≤ 1

C−wl(m
+
l ,m−m

+
l ) = w−cl 0 ≤ m+

l

m
< ρ

C−wl(m
+
l ,m−m

+
l ) = −∞ ρ ≤

m+
l

m
≤ 1,

(4.13)

where ρ indicates the threshold proportion of relevant instances in a bag. The interesting
case is ρ = 0.5, where we can learn models with majority assumption.

Generalized Cardinality Model (GCM)

The generalized cardinality model allows a very flexible notion of labeled bags. We allow the
proportion of relevant and irrelevant instances in bags to be a learned parameter, discovered
from the data. The MIL model will learn which fractions of instances tend to be of the

3Our experimental explorations show that setting these parameters to zero usually leads to satisfactory
results
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target class in a bag of that class. This cardinality model provides a very general model for
multiple instance learning and is parametrized by:

C+
wl(0,m) = −∞

C+
wl(m

+
l ,m−m

+
l ) =

K∑
k=1

w+
kl1(k − 1

K
<
m+
l

m
≤ k

K
)

m+
l = 1, · · · ,m

C−wl(m
+
l ,m−m

+
l ) =

K∑
k=1

w−kl1(k − 1
K
≤
m+
l

m
<

k

K
)

m+
l = 0, · · · ,m− 1

C−wl(m, 0) = −∞.

(4.14)

where K determines the number of weighted segments of a bag. This model divides the
bag size into K equal parts, and the weight of each segment wkl determines how important
it is that the number of relevant instances (i.e., the instances from class l) be placed inside
that interval. In other words, these learning weights specify the importance or impact of
different witness ratios for labeling a bag. Large values of K provide more detailed and
specific models of bag labeling by learning cardinality-based measures with finer resolution,
while low values of K define a coarser model of bag. So, by controlling the granularity, this
parameter is set in a trade-off between training accuracy and generalization ability4.

The constraints C+
wl(0,m) = −∞ and C−wl(m, 0) = −∞ are the only required prior

information in this model, which break the symmetry between positive and negative bags
and enforce at least one instance of a positive bag is positive and one instance of a negative
bag is negative. Note that since this model is very general and unconstrained, it is vulnerable
to overfitting (especially for multi-class classification) and requires careful training practices5

to achieve successful results.

Linearity of the Models

In Section 4.2.1, we showed that the instance-label potentials and the bag-label potential
are linear functions of the learning weights w (See equations (4.6) and (4.8)). Here, we
demonstrate the linearity of the cardinality-based labels clique potential with respect to w.
Consequently, the whole model score would be a linear function of the learning parameters.

Given C+
wl and C−wl defined for any of the standard, ratio-constrained, or generalized

cardinality models, the labels clique potential for each class label (i.e., φCwl) can be written
4In the experiments of Section 4.4, we validate on the values K = 3, K = 5, and K = 10 to roughly

estimate this parameter.
5Some examples of good practices are smart initialization of the learning weights (e.g. start with the

weights learned by the standard cardinality model) and early stopping on the training iterations by moni-
toring the validation error.
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as:
φCwl(yl, Yl) = w>ClΨC(yl, Yl) + gC(yl, Yl), (4.15)

where wCl represents the concatenation of the learning parameters in C+
wl and C

−
wl, while

ΨC(yl, Yl) and gC(yl, Yl) are functions independent of wl, which are specified by aggregation
of the indicator functions.

Now, by integrating all the potential functions of the cardinality model, the scoring
function introduced in (4.5) is reduced to the following linear expression:

fw(X,x, Y,y) = w>Ψ(X,x, Y,y) +
∑
l

gC(yl, Yl), (4.16)

where

Ψ(X,x, Y,y) = [
∑
i

ΨI(xi, y1i)>, · · · ,
∑
i

ΨI(xi, yLi)>,

ΨC(y1, Y1)>, · · · ,ΨC(yL, YL)>,

ΨB(X, Y1)>, · · · ,ΨB(X, YL)>]>.

(4.17)

This linearity property facilitates parameter learning with gradient-based methods, which
will be explained in Section 4.3.2.

4.3 Inference and Learning

The MIL models above define scoring functions fw which consider counts of instance labels
in a bag (see Eq. (4.5)). Using this, we can define a scoring function for assigning the
bag label Y to a bag with bag-feature X and instance features x by MAP inference of the
cardinality model over the hidden instance labels:

Fw(X,x, Y ) = max
y

fw(X,x, Y,y). (4.18)

Below, we describe how to efficiently solve this inference problem for the cardinality-
based cliques we defined above. Using this inference technique, learning can be performed
using a max-margin criterion, as in the Latent SVM approach [32].

Classification of a new test bag can be done in a similar manner. We can predict the
bag label by simply running inference, enumerating all possible Y and taking the maximum
scoring bag label:

Y ? = arg max
Y

Fw(X,x, Y ). (4.19)
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4.3.1 Inference

The inference problem is to find the best set of instance labels of all class labels y? =
{y?1,y?2, · · · ,y?L} given the observed feature vectors for the data {X,x} and the bag label
Y . Using (4.5) and (4.7), the inference problem in (4.18) can be written as

y? = max
y

L∑
l=1

(
∑
i

φIwl(xi, yli) + Cwl(m+
l ,m

−
l , Yl)). (4.20)

However, the instance labels of each class are conditionally independent from the in-
stance labels of other classes, given the input feature vectors and the bag label fixed. Thus,
the original inference problem of all instance labels is decomposed and reduced to inference
of the instance labels for each class label, separately:

y?l = max
yl

∑
i

φIwl(xi, yli) + Cwl(m+
l ,m

−
l , Yl). (4.21)

This problem is the standard problem of inferring a probabilistic graphical model with
cardinality clique potentials [44]. This class of PGMs is specified by two parts: the sum of
individual node potentials and a potential function over all the nodes which only depends on
the counts of the nodes which get specific labels. In our models, we only work with binary
node labels (i.e., yli ∈ {+1,−1}), for which there exists an exact inference algorithm with
O(m logm) time complexity6. The inference algorithm is as follows. First, sort the instances
in decreasing order of φIwl(xi,+1) − φIwl(xi,−1). Then, for k = 0, · · · ,m, compute slk, the
sum of the top-k instance potentials φIwl(xi,+1) − φIwl(xi,−1) plus the clique potential
Cwl(k,m− k, Yl). Finally, find k?l which gets the largest slk, and inference is accomplished
by assigning the top k?l instances to positive labels and the rest to negative labels. Repeating
this algorithm for each class label, the full inference in (4.20) takes O(Lm logm) time.

4.3.2 Learning

Let the training set is given by {
(
X1,x1, Y 1) , · · · , (XN ,xN , Y N

)
}, and the goal is to train

the cardinality model by learning the parameters w. Inspired by the relations to latent
SVM [32], we formulate the learning problem as minimizing the regularized hinge loss
function:

6For non-binary node labels, there exist only approximate inference algorithms. See [44] for more details.
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min
w

N∑
n=1

(Ln −Rn) + λ

2 ‖w‖
2

where Ln = max
Y

max
y

(∆(Y, Y n) + fw(Xn,xn, Y,y)),

Rn = max
y

fw(Xn,xn, Y n,y),

∆(Y, Y n) =

1 if Y 6= Y n

0 if Y = Y n.

(4.22)

One approach to solve this problem approximately is the iterative algorithm of alternat-
ing between inference of the latent variables and optimization of the model parameters. So,
the first step estimates the instance labels and the second step learns a standard SVM clas-
sifier given the estimated instance labels. It can be shown that using this approach for the
standard cardinality model and with binary class labels leads to the mi-SVM algorithm [6].

However, we use the non-convex regularized bundle method (NRBM) [26] to directly
solve the optimization problem in (4.22). It has been shown that NRBM has a fast con-
vergence rate compared to the state-of-the-art nonconvex optimiztion methods [28]. This
method iteratively makes an increasingly accurate piecewise quadratic approximation of
the objective function. At each iteration, a new linear cutting plane is obtained via the
subgradient of the objective function and added to the piecewise quadratic approximation.
To use this algorithm, the principal issue is to compute the subgradients ∂wLn(w) and
∂wRn(w). To this end, we need to know the subgradient of the cardinality model scoring
function, i.e., ∂wfw(X,x, Y,y).

Following the linear model derived in (4.16), it is simple to show that

∂wfw(X,x, Y,y) = Ψ(X,x, Y,y), (4.23)

Using equations (4.22) and (4.23), it can be shown that ∂wLn(w) = Ψ(Xn,xn, Y ?,y?),
where (y?, Y ?) is the solution to the inference problem:

max
Y

max
y

(∆(Y, Y n) + fw(Xn,xn, Y,y)). (4.24)

This inference problem can be solved using the algorithm in 4.3.1. In summary, we
enumerate all possible Y , and for each fixed Y we find y by doing inference on the re-
sulting graphical model (which has cardinality-based clique potentials and can be inferred
efficiently). Then, the Y with the highest value gives the predicted bag label Y ?.
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In the same way, it can be shown that ∂wRn(w) = Ψ(Xn,xn, Y n,y?), where y? is the
solution to the inference problem:

max
y

fw(Xn,xn, Y n,y). (4.25)

4.4 Experiments

In this section, we show the performance of the proposed framework in different classification
tasks. First, the standard cardinality model is evaluated on binary and multiclass MIL
benchmark datasets. Next, the extended models are applied to the two challenging computer
vision tasks of cyclist helmet recognition and human activity recognition to show that
flexibility in the portion of positives in a bag can lead to improved classification accuracy.

4.4.1 Benchmark Datasets

In this section, we evaluate our proposed standard cardinality model on MIL benchmark
datasets to demonstrate it can achieve the state of the art performance on standard datasets.

Binary Benchmarks

We evaluate the standard cardinality model on five popular binary MIL datasets7. These
benchmark datasets are the Elephant, Fox, Tiger image data sets [6] and Musk1 and Musk2
drug activity prediction data sets [25]. In the image data sets, each bag represents an image,
and the instances inside the bag represent 230-D feature vectors of different segmented blobs
of the image. These datasets contain 100 positive and 100 negative bags. In the Musk
datasets, each bag describes a molecule, and the instances inside the bag represent 166-D
feature vectors of the low-energy configurations of the molecule. Musk1 has 47 positive bags
and 45 negative bags with about 5 instances per bag. Musk2 has 39 positive bags and 63
negative bags with variable number of instances in a bag, ranging from 1 to 1044 (average
64 instances per bag).

In all experiments of this section, the instance features have been extended by approxi-
mate explicit intersection kernel mapping [97], and the bag features have been constructed
by the prediction scores of the MI-Kernel method [39] with RBF kernel. In addition, the
features have been preprocessed by scaling the original features to the range [0, 1]. At each
experimental trial, we run the non-convex cutting plane algorithm with all the learning
weights initialized to 0 (except bag features8) and at most 100 iterations. The regulariza-
tion parameter λ was roughly optimized on the 10-fold cross-validation accuracy by grid

7The original data sets are available online at http://www.cs.columbia.edu/~andrews/mil/datasets.
html.

8Since the bag features are the MI-Kernel prediction scores, we initialize them with small positive values,
e.g. 0.1, so that the first iteration of the algorithm will be the same as MI-Kernel
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search in a set of predetermined values (0.1, 1, 10, and 100). The averaged classification
accuracies for the standard cardinality model on different datasets are shown in Table 4.1.
This table also includes the classification results of MI-Kernel method to show the perfor-
mance of the bag features alone. It can be observed that combining the cardinality model
with the bag features achieves the best results.

Table 4.1: Evaluating the classification performance of MIMN model on binary benchmark
datasets.

Method Elephant Fox Tiger Musk1 Musk2
MI-Kernel 84.2 60.3 84.3 88.0 89.3
Cardinality model (without bag features) 87.0 60.5 84.5 87.1 87.2
Cardinality model (with bag features) 89.0 63.5 85.5 88.2 92.3

Now, we compare the standard cardinality model with the state-of-the-art MIL methods
in Table 4.2. The performance of the methods varies depending on the data set. However,
the standard cardinality model is always among the best methods. More specifically, it
achieves the best accuracy on the Elephant, Fox, Tiger, and Musk2 data sets.

Table 4.2: Comparison between state-of-the-art MIL methods on the binary MIL benchmark
datasets. The best and second best results are highlighted in bold and italic face respectively.

Method Elephant Fox Tiger Musk1 Musk2
Cardinality model 89 64 86 88 92
mi-SVM [6] 82 58 79 87 84
MI-SVM [6] 81 59 84 78 84
MI-Kernel [39] 84 60 84 88 89
γ-rule SVM [70] 84 63 81 88 85
SetMaxRBMXOR [71] 88 60 83 84 84
MIRealBoost [47] 83 63 73 91 77
MIForest [63] 84 64 82 85 82
SVR-SVM [66] 85 63 80 88 85
MIGraph [121] 85 61 82 90 90
miGraph [121] 87 62 86 90 90
MILES [18] 81 62 80 88 83
AW-SVM [40] 82 64 83 86 84
AL-SVM [40] 79 63 78 86 83
EM-DD [120] 78 56 72 85 85

Multiclass Benchmarks

In this section, we evaluate the multiclass extension of the standard cardinality model for
image categorization on the COREL dataset. We work on the 1000-image and 2000-image
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datasets9 [18], which contain ten and twenty categories with 100 image per category. Each
image is represented as a bag of instances, where the instances are the ROIs (Region of
Interests) described by nine features (representing color, shape, and energy).

We perform the experiments with the same setup as in Section 4.4.1, i.e. extending
and scaling the instance features and extracting MI-Kernel bag features. Also, the same
experimental routine as described in [18] was used: the images of each category are split
into half for training and test, and the experiment on each dataset is repeated five times.
The results are provided in Table 4.3 and compared with other MIL methods. Note that
the accuracy of MI-Kernel is based on our implementation, and for the other methods the
numbers are reported from [65]. As seen in the table, the standard cardinality model is
competitive with the state-of-the-art methods.

Table 4.3: Comparison between state-of-the-art MIL methods on the COREL image
datasets. The numbers show the average accuracy over 5 trials and the corresponding
95% intervals.

Method 1000-Image 2000-Image
Cardinality model 85.6 ± 0.5 71.6 ± 1.0
MI-Kernel [39] 84.1 ± 0.6 69.1 ± 0.7
MKSVM-MIL [65] 85.2 ± 1.1 71.3 ± 1.2
MILES [18] 81.5 ± 3.0 68.7 ± 1.4
DD-SVM [19] 74.7 ± 1.6 67.5 ± 0.8
MissSVM [122] 78.0 ± 2.2 65.2 ± 3.1
MI-SVM [6] 74.7 ± 1.6 54.6 ± 1.5

4.4.2 Cyclist Helmet Recognition

In this section, we use our proposed models to address a binary video classification task. This
problem is illustrated in Figure 4.4. Given an automatically-obtained cyclist trajectory, we
must determine whether the cyclist is wearing a helmet or not. One can treat this as a MIL
problem – each frame is an instance, and the trajectory forms a bag. The bag (trajectory)
should be classified as containing a helmet-wearing cyclist or not. However, the standard
MIL or traditional supervised learning approaches (e.g. classify each instance and majority
vote) cannot easily handle this problem. Because of imperfection in tracking, it is unlikely
that all the instances in a positive bag are truly positive – some will not be well centered
on the cyclist’s head due to jitter, regardless of the tracker used. Traditional supervised
learning would have many corrupted positive instances of helmet-wearing cyclists. Standard
MI assumption would not make full use of the training data, since each track would very
likely have more than one positive instance.

9The original data sets are available online at http://www.miproblems.org/datasets/corel.
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Wearing Helmet?

Figure 4.4: Cyclist helmet classification – is she wearing helmet? how many positives are
in this bag? An automatic cyclist detector/tracker is run, with head position estimate in
green rectangle. Data instances are features defined on the head position estimates, bags
aggregate these over a track.

Experimental Setup

We work with cyclist trajectories automatically extracted from video data. The data are
collected for a busy 4-legged intersection with vehicles, pedestrians, and cyclists, over a two-
day period. Kanade-Lucas-Tomasi feature tracking and trajectory clustering are used to
extract moving objects. These clusters are then automatically classified (vehicle, pedestrian,
cyclist) by analyzing speed profiles (e.g. the pedalling cadence).

We chose a dataset of 24 cyclist tracks for our experiments – 12 wearing helmets and
12 not. The head location is estimated using background subtraction upon the tracks. We
describe each frame of a track using texton histograms [73] in a region of size 20×20 around
the head position (chosen after empirically examining other features). We report the results
of helmet classification using leave-one-out cross-validation on this dataset.

We introduce a MIL approach to classify sequences. Each video is treated as a bag of
frames represented by instances, and we use the proposed models in Section 4.2 to classify
the bags. We also compare this approach with non-MIL methods. In the non-MIL approach,
all frames from positive and negative training videos are put together and labelled according
to their video labels. Next, a standard SVM classifier [13] is trained and used to predict
each frame label of the test videos. Finally, the bag label is predicted by one of the following
criteria:

• SVM-AtLeastOne: The bag label is positive if at least one of the instance labels is
positive.

• SVM-Majority: The bag label is specified by the majority voting of the instance labels.

Experimental Results

For our proposed algorithms, we run the non-convex cutting plane algorithm with all the
learning weights initialized to 0 and at most 100 iterations. For all the algorithms the
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Table 4.4: Results of the experiments on cyclist helmet classification problem.

Method Accuracy %
SVM-AtLeastOne 58.33
SVM-Majority 79.17
mi-SVM 62.50
Standard cardinality model 58.33
Ratio-constrained cardinality model (ρ = 0.5) 91.67
Generalized cardinality model (K = 5) 87.50

regularization parameter was estimated by grid search on the cross-validation accuracy.
The average classification accuracy of each method is shown in Table 4.4. We include mi-
SVM as an additional baseline. In addition, the results of the ratio-constrained cardinality
model with different ρ values are demonstrated in Figure 4.5.
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Figure 4.5: Cyclist helmet recognition accuracy with the ratio-constrained cardinality model
and different values of the parameter ρ.

It can be observed that the classification accuracy of SVM-AtLeastOne, mi-SVM, and
the standard cardinality model are quite low. This shows that the traditional classification
approach (used in SVM-AtLeastOne) and the standard multi-instance assumption (used
in mi-SVM and the standard cardinality model) are very inefficient in this problem. The
standard MI assumption fails because it is very likely that at least one of the instances
in a negative bag is classified as positive, and consequently most of the negative bags are
assigned positive labels. This problem is due to the imperfection in the classifier and low-
quality visual representation of the cyclist’s head in the video. However, it is clearly evident
that SVM-Majority, the ratio-constrained cardinality model (with most ρ values), and the
generalized cardinality model are more robust to these defects. The results show that the
ratio-constrained cardinality model (with ρ = 0.5) outperforms all the other methods. Also,
it is shown that the generalized cardinality model has competitive performance. It learns
the multi-instance assumption properly without any prior knowledge of the ambiguity level
(e.g., parameter ρ) and classifies the videos successfully.
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(a) correctly classified samples

(b) incorrectly classified samples

Figure 4.6: Samples of correctly and incorrectly classified videos by the generalized cardi-
nality model. Red + shows automatic head position estimate.

Finally, we illustrate some videos correctly and incorrectly classified by our method in
Figure 4.6.
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4.4.3 Group Activity Recognition

In this section, we show the application of the proposed cardinality-based multi-instance
models for group activity recognition. We run experiments on two datasets: nursing home
dataset [61] and collective activity dataset [21].

Nursing Home Dataset

In this section, our method is evaluated for activity recognition in a nursing home. The
dataset we use [61] provides scenes in which the individuals might be performing different
actions such as walking, standing, sitting, bending, or falling. However, the goal is to detect
the "fall" event, i.e., if any person is falling or not in a scene. Thus, we use the proposed
binary standard cardinlity model to encode that at least one of the individuals is falling in
a positive scene. Figure 4.7 illustrates the problem of fall scene detection in the nursing
home dataset.

fall?
fall?

fall?

fall?

fall?

fall?

Fall?

Figure 4.7: An example of "fall" scene from the nursing home dataset. We model this
problem as a multi-instance learning problem, where each individual is represented as an
instance and the goal is to recognize if any person is falling in the scene. To this end, we
use our proposed standard cardinality model.

The dataset has 22 video clips (12 clips for training and 8 clips for test) with 2990
annotated frames, where about one third of them are assigned the “fall” activity label. We
use the same features and experimental settings as used in [61]. The results in terms of
classification accuracy are shown in Table 4.5. We compare our method with global bag-
of-words method and the spatial structured models. It can be observed that our proposed
cardinality model outperforms the others.

Collective Activity Dataset

In this section, we study the application of the proposed models in the multiclasss classifi-
cation task of collective activity recognition. The collective activity dataset [21] comprises
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Table 4.5: Comparison of different methods on the nursing home dataset in terms of clas-
sification accuracy (CA) and mean per-class accuracy (MPCA). We used the same features
and experimental settings as in [61].

Method CA MPCA
Global bag-of-words with SVM [61] 52.6 53.9
Latent SVM with unconnected graph [61] 58.6 56.0
Latent SVM with tree-structured graph [61] 64.1 60.6
Latent SVM with complete graph [61] 70.0 63.1
Latent SVM with optimized graph structure [61] 71.2 65.0
Standard cardinality model (ours) 76.1 66.2

44 videos (about 2500 video frames) of crossing, waiting, queuing, walking, and talking. The
goal is to classify the collective activity in each video frame, where the collective activity
commonly tends to be the action that the majority of people in the scene are doing. For
this purpose, each frame scene is modeled as a bag of people described by the action context
feature descriptors10 proposed in [61]. The MIL representation of this problem is shown
in Figure 4.8. In our experiments, the same experimental setup is followed as explained in
[61], i.e., the same 1/3 of the video clips were selected for test and the rest for training.
We use our proposed ratio-constrained cardinality model with ρ = 0.5 to encode majority
multi-instance assumption on the action labels. The results are shown in Table 4.6 and
compared with the following methods: (1) SVM with global bag-of-words features and (2)
spatial latent structured models in [61].

Collective Activity?

Action?

Action?
Action?

Action? Action?

(a) Waiting

Collective Activity?

Action?
Action?

Action?

Action? Action?
Action?

Action?

(b) Crossing

Figure 4.8: Two examples from the collective human activity recognition dataset. The left
figure shows a scene where the collective activity is waiting while the right figure shows
a similar scene but the collective activity is crossing. The intuition is that the collective
activity tends to be the action that majority of people are doing. We model this problem
as a multi-instance learning problem, where the goal is to recognize the collective activity
in the scene by inferring the hidden action each person is doing. We use our proposed
ratio-constrained cardinality model to encode the majority multi-instance assumption.

10Note that this feature descriptor is built on a spatio-temporal context region around any individual. So
it encodes the spatio-temporal information in the action and its context. By using our multi-instance model,
the spatio-temporal and cardinality information are combined.
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Table 4.6: Comparison of different methods on collective activity dataset in terms of multi-
class accuracy (MCA) and mean per-class accuracy (MPCA). We used the same features
and experimental settings as in [61].

Method MCA MPCA
Global bag-of-words with SVM [61] 70.9 68.6
Latent SVM with optimized graph [61] 79.7 78.4
Standard cardinality model 78.9 76.3
Ratio-constrained cardinality model (ρ = 0.5) 80.6 79.7
Generalized cardinality model (K = 3) 75.0 71.3

Our proposed ratio-constrained cardinality model can achieve the best results, even
compared to the structure-optimized spatial model in [61] by simply replacing spatial rela-
tions with cardinality relations. We also illustrate the confusion matrix for this experiment
in Figure 4.9. Finally, visualization of some example recognition results are provided in
Figure 4.10.

Figure 4.9: Confusion matrix for collective activity recognition using the ratio-constrained
cardinality model (rows are the true labels, and columns are predicated labels).

4.5 Summary and Conclusion

We proposed a novel probabilistic graphical framework for both binary and multiclass multi-
instance learning based on cardinality-based CRFs and max-margin discriminative training.
This framework is flexible and can model the standard multi-instance assumption as well as
more general MI assumptions. Thus, it is more robust to the amount of labeling ambiguity
(i.e. true positive instances) in the bags. Specifically, it can be helpful in vision applications
which exhibit imperfect annotation or ambiguous feature representations.

The experiments showed that learning and encoding the degree of ambiguity in the
classifier can influence the accuracy of classification. We used the proposed framework for
binary classification of cyclists with and without helmet. We also evaluated the performance
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Figure 4.10: Visualization of some recognition results of the proposed method. Each figure
is annotated by the predicted collective activity. Also each individual is represented by a
colored bounding box. If an individual is involved in the predicted collective activity, the
bounding box is green, otherwise red (In fact, these colors are used to illustrate predicted
instance labels – green for positive label and red for negative label). For example, in the
first figure from left, three people are waiting and two people are walking (passing by in the
street). In the second figure, three people are crossing and the others are walking. In the
third figure, all the people are walking except two people who are talking. Note that the in-
stance labels are not always correctly predicted. For example in the fourth figure although
all the people are involved in the queuing activity, however, two of them are incorrectly
labeled by red. Also, in the last figure three people are incorrectly labeled. It seems that
because of our weakly supervised learning framework (where we only incorporate the whole
scene collective activity label in the max-margin learning formulation and model the indi-
vidual action labels with hidden variables), the resulting model is sometimes conservative
in predicting the instance labels and try to detect just enough positive instances to predict
the whole scene collective activity correctly.

of the multiclass models on the collective activity recognition dataset. These are challenging
problems, where the traditional supervised learning and standard MIL assumptions fail.
However, the extended ratio-based models enhance classification performance by encoding
more general and robust multi-instance assumptions and mining the degree of ambiguity.

The proposed graphical framework is flexible and can be easily extended or modified.
For example, it can be modified for multi-label multi-instance learning, where a bag can take
more than one label. Also, the model can be extended by defining more potential functions
between the graph nodes. For example, new potential functions might be defined over
neighbouring instance labels to model spatial or temporal relations between the instances.
Finally, this framework could be adapted for individual classification from group statistics,
and be applied to tasks such as privacy-preserving data mining, election results analysis,
spam and fraud detection [82, 85, 118].
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Chapter 5

A Multi-Instance Cardinality
Potential Kernel for Visual
Recognition

Many visual recognition problems can be approached by counting instances. To determine
whether an event is present in a long internet video, one could count how many frames
seem to contain the activity. Classifying the activity of a group of people can be done
by counting the actions of individual people. Encoding these cardinality relationships can
reduce sensitivity to clutter, in the form of irrelevant frames or individuals not involved
in a group activity. This chapter develops a powerful and flexible kernel framework for
multiple instance learning, which is built on probabilistic graphical models capturing cardi-
nality relation between latent instance labels. Experiments on tasks such as human activity
recognition, video event detection, and video summarization demonstrate the effectiveness
of using cardinality relations for improving recognition results.

5.1 Overview

A number of visual recognition problems involve examining a set of instances, such as the
people in an image or frames in a video. For example, in group activity recognition (e.g. [21])
the prominent approach to analyzing the activity of a group of people is to look at the ac-
tions of individuals in a scene. A number of impressive methods have been developed for
modeling the structure of a group activity [61, 20, 4], capturing spatio-temporal relations
between people in a scene. However, these methods do not directly consider cardinality re-
lations about the number of people that should be involved in an activity. These cardinality
relations vary per activity. An activity such as a fall in a nursing home [61] is different in
composition from an activity such as queuing [20], involving different numbers of people
(one person falls, many people queue). Further, clutter, in the form of people in a scene
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performing unrelated actions, confounds recognition algorithms. In this chapter we present
a framework built on a latent structured model to encode these cardinality relations and
deal with the ambiguity or clutter in the data.

Another example is unconstrained internet video analysis. Detecting events in internet
videos [79] or determining whether part of of a video is interesting [45] are challenging
for many reasons, including temporal clutter – videos often contain frames unrelated to
the event of interest or that are difficult to classify. Two broad approaches exist for video
analysis, either relying on holistic bag-of-words models or building temporal models of
events. Again, successful methods for modeling temporal structure exist (e.g. [43, 93, 90,
95]). Our method builds on these successes, but directly considers cardinality relations,
counting how many frames of a video appear to contain a class of interest, and using soft
and intuitive constraints such as “the more, the better" to enhance recognition.
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Figure 5.1: Encoding cardinality relations can improve visual recognition. (a) An example
of collective activity recognition. Three people are waiting, and two people are walking
(passing by in the street). Using only spatial relations, it is hard to infer what the dominant
activity is, but encoding the cardinality constraint that the collective activity tends to
be the majority action helps to break the tie and favor “waiting" over “walking". (b)
A “birthday party" video from the TRECVID MED11 dataset [79]. Some parts of the
video are irrelevant to birthdays and some parts share similarity with other events such as
“wedding". However, encoding soft cardinality constraints such as “the more relevant parts,
the more confident decision", can enhance event detection. (c) A video from the SumMe
summarization dataset [45]. The left image shows an important segment, where the chef is
stacking up a cone. The right image shows the human-judged interesting-ness score of each
frame. Even based on human judgment, not all parts of an important segment are equally
interesting. Due to uncertainty in labeling the start and end of a segment, the cardinality
potential might be non-monotonic.

Fig. 5.1 shows an overview of our method. We encode our intuition about these counting
relations in a multiple instance learning framework. In multiple instance learning, the input
to the algorithm is a set of labeled bags containing instances, where the instance labels are
not given. We approach this problem by modeling the bag with a probabilistic latent
structured model. Here, we highlight the major contributions of this chapter.
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Showing the importance of cardinality relations for visual recognition. We show
in different applications that encoding cardinality relations, either hard (e.g. majority) or
soft (e.g. the more, the better), can help to enhance recognition performance and increase
robustness against labeling ambiguity.

A kernelized framework for classification with cardinality relations. We use a
latent structured model, which can easily encode any type of cardinality constraint on
instance labels. A novel kernel is defined on these probabilistic models. We show that our
proposed kernel method is effective, principled, and has exact and tractable inference and
learning methods.

5.2 Related Work

In this chapter, we present a novel model for cardinality relations in visual recognition, in
particular for the analysis of video sequences. Existing video analysis methods generally
focus on structured spatio-temporal models, complementary to our proposed approach. For
instance, pioneering work was done by Gupta et al. [43] in analyzing structured videos
by creating “storyline” models populated from AND-OR graph representations. Related
models have proven effective at analyzing scenes of human activity more broadly in work
by Amer et al. [4]. A series of recent papers has focused on the problem of group activity
recognition, inferring an activity that is performed by a set of people in a scene. Choi et
al. [21, 20], Lan et al. [61], and Khamis et al. [54] devised models for spatial and tempo-
ral relations between the individuals involved in a putative interaction. Zhu et al. [123]
consider contextual relations between humans and objects in a scene to detect interactions
of interest. The structural relations exploited by these methods are a key component of
activity understanding, but present different information from the cardinality relations we
study.

Analogous approaches have been studied for “unconstrained” internet video analysis.
Methods to capture the temporal structure of high-level events need to be robust to the
presence of irrelevant frames. Successful models include Tian et al. [93] and Niebles et
al. [78], who extend latent variable models in the temporal domain. Tang et al. [90] develop
hidden Markov models with variable duration states to account for the temporal length
of action segments. Vahdat et al. [95] compose a test video with a set of kernel matches
to training videos. Tang et al. [91] effectively combine informative subsets of features
extracted from videos to improve event detection. Bojanowski et al. [10] label videos with
sequences of low-level actions. Pirsiavash and Ramanan [80] develop stochastic grammars
for understanding structured events. Xu et al. [112] propose a feature fusion method based
on utilizing related exemplars for event detection. Lai et al. [60] apply multiple instance
learning to video event detection by representing a video as multi-granular temporal video
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segments. Our work is similar in spirit, but contributes richer cardinality relations and more
powerful kernel representations; empirically we show these can deliver superior performance.

The continued increase in the amount of video content available has rendered the summa-
rization of unconstrained internet videos an important task. Kim et al. [56] build structured
storyline-type representations for the events in a day. Khosla et al. [55] use web images as a
prior for selecting good summaries of internet videos. Popatov et al. [81] learn the important
components of videos of high-level events. Gygli et al. [45] propose a benchmark dataset for
measuring interesting-ness of video clips and explore a set of high-level semantic features
along with superframe segmentation for detecting interesting video clips. We demonstrate
that our cardinality-based methods can be effective for this task as well, scoring a clip by
the number of interesting frames it contains.

5.2.1 Multi-Instance Learning

We develop an algorithm based on multiple instance learning, where an input example
consists of a bag of instances, such as a video represented as a bag of frames. The traditional
assumption is that a bag is positive if it contains at least one positive instance, while in a
negative bag all the instances are negative. However, this is a very weak assumption, and
recent work has developed advanced algorithms with different assumptions [67, 47, 46, 60].

For example, Li et al. [67] formulated a prior on the number of positive instances in
a bag, and used an iterative cutting plane algorithm with heuristics to approximate the
resultant learning problem. Yu et al. [118] proposed ∝SVM for learning from instance pro-
portions, and showed promising results on video event recognition [60]. Our work improves
on this approach by permitting more general cardinality relations with an efficient and exact
training scheme.

Similar to Chapter 4, our approach starts by modeling a bag of instances with a prob-
abilistic model which has a cardinality-based clique potential between the instance labels.
This cardinality potential facilitates defining any cardinality relations between the instance
labels and efficient and exact solutions for both maximum a posteriori (MAP) and sum-
product inference [44, 92]. Next, we extend our previous line of work in Chapter 4 by
developing a novel kernel-based learning algorithm that enhances classification performance.

Kernel methods for multiple instance learning include Gärtner et al.’s [39] MI-Kernel,
which is obtained by summing up the instance kernels between all instance pairs of two bags.
Hence, all instances of a bag contribute to bag classification equally, although they are not
equally important in practice. To alleviate this problem, Kwok and Cheung [58] proposed
marginalized MI-Kernel. This kernel specifies the importance of an instance pair of two
bags according to the consistency of their probabilistic instance labels. In our work, we also
use the idea of marginalizing joint kernels, but we propose a unified framework to combine
instance label inference and bag classification within a probabilistic graph-structured kernel.
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5.3 Proposed Method: Cardinality Kernel

We propose a novel kernel for modeling cardinality relations, counting instance labels in a
bag – for example the number of people in a scene who are performing an action. We start
with a high-level overview of the method, following the depiction in Fig. 5.2.

The method operates in a multiple instance setting, where the input is bags of instances,
and the task is to label each bag. For concreteness, Fig. 5.2(a) shows video event detection.
Each video is a bag comprised of individual frames. The goal is to label a video according
to whether a high-level event of interest is occurring in the video or not. Temporal clutter,
in the form of irrelevant frames, is a challenge. Some frames may be directly related to the
event of interest, while others are not.

Fig. 5.2(b) shows a probabilistic model defined over each video. Each frame of a video
can be labeled as containing the event of interest, or not. Ambiguity in this labeling is
pervasive, since the low-level features defined on a frame are generally insufficient to make a
clear decision about a high-level event label. The probabilistic model handles this ambiguity
and a counting of frames – parameters encode the appearance of low-level features and the
intuition that more frames relevant to the event of interest makes it more likely that the
video as a whole should be given the event label.

A kernel is defined over these bags, shown in Fig. 5.2(c). Kernels compute a similarity
between any two videos. In our case, this similarity is based on having similar cardinality
relations, such as two videos having similar counts of frames containing an event of interest.
Finally, this kernel can be used in any kernel method, such as an SVM for classification,
Fig. 5.2(d).
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Figure 5.2: The high-level scheme of the proposed kernel method for bag classification.

5.3.1 Cardinality Model

A cardinality potential is defined in terms of counts of variables which take some par-
ticular values. For example, with binary variables, it is defined in terms of the number
of positively and negatively labeled variables. Given a set of binary random variables
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y = {y1, y2, · · · , ym} (yi ∈ {0, 1}), the cardinality potential model is described by the joint
probability

P (y) = C(
∑
i yi)

∏
i exp (ϕiyi)∑

yC(
∑
i yi)

∏
i exp (ϕiyi)

, (5.1)

which consists of one cardinality potential C(·) over all the variables and unary potentials
exp (ϕiyi) on features ϕi on each single variable. Maximum a posteriori (MAP) inference
of this model is straight-forward and takes O (m logm) time [44]. Sum-product inference
is more involved, but efficient algorithms exist [92], computing all marginal probabilities of
this model in O

(
m log2m

)
time.

In problems with multiple instances, there are assumptions or constraints which are
defined on the counts of instance labels. For example, the standard multi-instance as-
sumption states that at least one instance in a positive bag is positive. So, it is intuitive
that these constraints can be modeled by a cardinality potential over the instance labels.
This modeling helps to have exact and efficient solutions for MIL problems, using existing
state-of-the-art inference and learning algorithms.

Using this cardinality potential model as the core, a probabilistic model of the likelihood
of a bag of instances X = {x1,x2, · · · ,xm} with the bag label Y ∈ {−1,+1} and the instance
labels y with model parameters θ, is built (c.f. [92]):

P (Y,y|X;θ) ∝ φC(Y,y)
∏
i

φIθ(xi, yi). (5.2)

A graphical representation of the model is shown in Fig. 5.2(b). In our framework, we call
this the "cardinality model", and the details of its components are described as follows:
Cardinality clique potential φC(Y,y): a clique potential over all the instance labels and
the bag label. This is used to model multi-instance or label proportion assumptions and is
formulated as φC(Y,y) = C(Y )(

∑
i yi). C(+1) and C(−1) are cardinality potentials for posi-

tive and negative bag labels, and in general could be expressed by any cardinality function.
In this chapter we work with the “normal" model in (5.3) and the “ratio-constrained" model
in (5.4).

C(+1)(c) = exp
(
−( c
m
− µ)2/2σ2

)
C(−1)(c) = exp

(
−( c
m

)2/2σ2
)
.

(5.3)

C(+1)(c) = 1( c
m
>= ρ)

C(−1)(c) = 1( c
m
< ρ).

(5.4)

The parameter µ in the normal model or ρ in the ratio-constrained model controls the
proportion of positive labeled instances in a bag. The Normal model does not impose hard
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constraints on the number of positive instances, and consequently a positive bag can have
any proportion of positive instances but it is more likely to be around µ. On the other
hand, the ratio-constrained model makes a hard constraint, assuming a bag must have at
least a certain ratio (ρ) of positive instances.
Instance-label potential φIθ(xi, yi): represents the potential between each instance and
its label. Essentially, this potential describes how likely it is for an instance (e.g. video
frame) to receive a certain label (e.g. relevant or not to an event). It is parameterized as:

φIθ(xi, yi) = exp (θtxi yi) (5.5)

With these potential functions, the joint probability in (5.2) can be rewritten as

P (Y,y|X;θ) ∝ C(Y )(
∑
i

yi)
∏
i

exp (θtxi yi). (5.6)

And finally, the bag label likelihood, is obtained by

P (Y |X;θ) =
∑

y
P (Y,y|X;θ) = Z(Y )∑

Y ′ Z
(Y ′) , (5.7)

whereZ(Y ) =
∑

y

(
C(Y )(

∑
i

yi)
∏
i

exp (θtxi yi)
)

(5.8)

is the partition function of a standard cardinality potential model, which can be computed
efficiently.

In summary, we have a unified probabilistic model which states the probability that a
bag (e.g. video) receives a label based on classifying individual instances (e.g. frames) and
a cardinality potential which prefers certain counts of positively labeled instances.

Parameter Learning

Since only the bag labels, and not the instance labels, are provided in training, the cardi-
nality model is a hidden conditional random field (HCRF). A commonly used algorithm for
learning HCRFs is maximum a posteriori estimation of the parameters given the parameter
prior distributions by maximizing the following log likelihood function:

L(θ) =
∑
i

logP (Yi|Xi;θ)− λ r(θ). (5.9)

This is the standard maximum likelihood optimization of an HCRF with parameter regu-
larization (r(θ) = ‖θ‖n for Ln-norm regularization). Gradient ascent is used to find the
optimal parameters, where the gradients are obtained efficiently in terms of marginal prob-
abilities [83].
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5.3.2 Cardinality Kernel

This section presents the proposed probabilistic kernel for multi-instance classification. Ker-
nels operate over a pair of inputs, in this case two bags. This kernel is defined using the
cardinality models defined above. Each bag has its own set of instances, and a probabilistic
model is defined over each bag. A kernel over bags is formed by marginalizing over latent
instance labels.

Given two bags Xp and Xq, a joint kernel is defined between the combined instance
features and instance labels for these bags zp = (Xp,yp) and zq = (Xq,yq):

kz(zp, zq) =
mp∑
i=1

mq∑
j=1

kx(xpi,xqj)ky(ypi, yqj), (5.10)

where kx(·, ·) is a standard kernel between single instances, and ky(·, ·) is a kernel defined
on discrete instance labels1. By marginalizing the joint kernel w.r.t. the hidden instance
labels and with independence assumed between the bags, a kernel is defined on the bags as:

k̃(Xp,Xq) =
∑

yp,yq

P (yp|Xp)P (yq|Xq)kz(zp, zq). (5.11)

Combining the fully observed label instance kernel (5.10) with the probabilistic version
(5.11), it can be shown that the marginalized joint kernel is reduced to

mp∑
i=1

mq∑
j=1

∑
yp,yq

(
kx(xpi,xqj)ky(ypi, yqj)P (ypi|Xp)P (yqj |Xq)

)
. (5.12)

In our proposed framework, P (ypi|Xp) and P (yqj |Xq) are obtained by

P (yi|X) =
∑
Y

P (yi|Y,X)P (Y |X), (5.13)

where P (yi|Y,X) are the marginal probabilities of a standard cardinality potential model,
which can be computed efficiently in O(m log2m) time. Also P (Y |X) is the bag label
likelihood introduced in (5.7).

In general, any kernel for discrete spaces can be used as ky. The most commonly used
discrete kernel is ky(ypi, yqj) = 1(ypi = yqj). However, since throughout this chapter we are
dealing with binary instance labels and we are interested in performing recognition with
the most salient and positively relevant instances of a bag, ky is assumed to be

ky(ypi, yqj) = 1(ypi = 1) · 1(yqj = 1). (5.14)
1If ky(·, ·) is set to 1, the resulting kernel will be equivalent to MI-Kernel [39]. Also, note that since the

joint kernel is obtained by summing and multiplying the base kernels, it is proved to be a kernel, has all
kernel properties, and can be safely plugged into kernel methods.
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Using this, the kernel in (5.12) is simplified as:

k̃(Xp,Xq) =
mp∑
i=1

mq∑
j=1

kx(xpi,xqj)P (ypi = 1|Xp)P (yqj = 1|Xq). (5.15)

It is interesting to note that this kernel in (5.15) can be rewritten as

k̃(Xp,Xq) =
( mp∑
i=1

P (ypi = 1|Xp)Ψ(xpi)
)( mq∑

j=1
P (yqj = 1|Xq)Ψ(xqj)

)
, (5.16)

where Ψ(x) is the mapping function that maps the instances to the underlying feature
space of the instance kernel kx. This proves that the unnormalized cardinality kernel in
the original feature space corresponds to weighted sum of the instances in the induced
feature space of kx, where the weights are the marginal probabilities inferred from the
cardinality model in the original space. It can be also shown that in the more general case
of ky(ypi, yqj) = 1(ypi = yqj), the resulting cardinality kernel would correspond to weighted
sum of all the instances which take the same instance label in the mapped feature space
and concatenating them altogether.

Finally, to avoid bias towards the bags with large numbers of instances, the kernel is
normalized as [39]:

k(Xp,Xq) = k̃(Xp,Xq)√
k̃(Xp,Xp)

√
k̃(Xq,Xq)

. (5.17)

We call the resulting kernel the “Cardinality Kernel". By using this kernel in the standard
kernel SVM, we propose a method for multi-instance classification with cardinality relations.

5.3.3 Algorithm Summary

The proposed algorithm is summarized as follows. First the parameters θ of the cardinality
model are learned (Sec. 5.3.1). These parameters control the classification of individual
instances and the cardinality relations for bag classification. Next, the marginal probabilities
of instance labels under this model are inferred and used in the kernel function in (5.15).
Finally, the kernel is normalized and plugged into an SVM classifier.

5.3.4 Computational Complexity

First, we analyze the time complexity of computing the cardinality kernel. Assume that
evaluation of the primitive kernel kx takes O(d) time, where d is the size of the instance
feature vectors. Consequently, kx(·, ·) between all instance pairs of two bags Xp and Xq

can be computed in O(mpmqd). As we explained in Section 5.3.2, the time complexity
of computing the marginal probabilities P (yi|Y,X) is O

(
m log2m

)
. Thus, the kernel in

(5.15) can be evaluated in O(mpmqd + mp log2mp + mq log2mq) time. As a result, the

69



computational complexity of prediction with this kernel in a standard SVM for a single bag
Xp is O(Nsv m̄mp d + Nsv m̄ log2 m̄ + mp log2mp), where Nsv is the number of support
vectors and m̄ is the maximum number of instances in the training bags.

Now, we analyze the computational complexity of training the Cardinality Kernel. First,
the parameters of the cardinality model should be learned. Learning this HCRF with
regularized likelihood maximization takes O(NiterN m̄ log2 m̄ + NiterN m̄d) time, where
N is the number of training bags and Niter is the number of iterations of the gradient
ascent algorithm. The kernel matrix can be computed in O(N2 m̄2 d + N m̄ log2 m̄) time.
Finally, assuming the quadratic programming to solve the SVM dual takes O(N3) time2,
the computational complexity of the entire algorithm is O(NiterN m̄ log2 m̄+NiterN m̄d+
N2 m̄2 d+N3).

We performed our experiments on an Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz. As a
numerical example, in the the collective activity recognition problem of Section 5.4.1 (which
consists of 1908 training bags and 639 test bags with average 5 instances per bag and the
instances are 240 dimensional), the total training time was around 10 minutes versus 7
minutes for the test time.

5.3.5 Parameter setting guidelines for the proposed Cardianlity Kernel
method

To train the cardinality model, two hyper-parameters should be set: the regularization
weight for likelihood optimization of the cardinality model (i.e., λ), and the regularization
weight for training SVM (i.e., C). In our experiments we used the standard grid search over a
set of predetermined values of λ and C (e.g., powers of 10) to set these parameters. However,
this requires a quadratic number of runs of the algorithm, which might be inefficient. As a
faster alternative, we found that just running MI-Kernel is effectively enough to estimate
the value of parameter C. Next, we fix this parameter and run the Cardinality Kernel
method to find the best estimate for λ.

Another setting is to initialize the learning parameters of the cardinality model (i.e.,
θ) for regularized likelihood maximization. Actually, this is a non-convex optimization and
sensitive to initialization. In all our experiments we initialized the parameters θ to zero.
In fact, since the resulting kernel is finally plugged into SVM, and SVM relies on a convex
optimization, the whole algorithm is fairly robust to initialization. For example, even if we
freeze θ = 0 and do not train the cardinality model, it can be shown the resulting kernel is
equivalent to MI-Kernel, which is an effective multi-instance algorithm [39].

2In our experiments, we used the LIBSVM [13] solver, which can be much more efficient than O(N3) in
practice.
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5.4 Experiments

We provide empirical results on three tasks: group activity recognition, video event detec-
tion, and video interesting-ness analysis.

5.4.1 Collective Activity Recognition

The Collective Activity Dataset [21] comprises 44 videos (about 2500 video frames) of
crossing, waiting, queuing, walking, and talking. Our goal is to classify the collective activity
in each frame. To this end, we model the scene as a bag of people represented by the action
context feature descriptors3 developed in [61]. We use our proposed algorithms with the
ratio-constrained cardinality model in (5.4) with ρ = 0.5, to encode a majority cardinality
relation. We follow the same experimental settings as used in [61], i.e., the same 1/3 of
the video clips were selected for test and the rest for training. The one-versus-all technique
was employed for multi-class classification. We applied l2-norm regularization in likelihood
maximization of the cardinality model and simply used linear kernels as the instance kernels
in our method. The results of our Cardinality Kernel are shown in Table 5.1 and compared
with the following methods4: (1) SVM on global bag-of-words, (2) Graph-structured latent
SVM method in [61], (3) MI-Kernel [39], (4) Cardinality model of Section 5.3.1 (our own
baseline).

Table 5.1: Comparison of classification accuracies of different algorithms on collective ac-
tivity dataset. Both multi-class accuracy (MCA) and mean per-class (MPC) accuracy are
shown because of class size imbalance.

Method MCA MPCA
Global bag-of-words with SVM [61] 70.9 68.6
Latent SVM with optimized graph [61] 79.7 78.4
Cardinality Model 79.5 78.7
MI-Kernel 80.3 78.4
Cardinality Kernel (our proposed method) 83.4 81.9

Our simple cardinality model can achieve results comparable to the structure-optimized
models by replacing spatial relations with cardinality relations. Further, the proposed
Cardinality Kernel can significantly improve classification performance of the cardinality
model. Finally, our Cardinality Kernel is considerably better than MI-Kernel, showing the
advantage of using importance weights (i.e. probability of being positive) of each instance
for non-uniform aggregation of instance kernels.

Fig. 5.3a illustrates the effect of ρ in the ratio-constrained cardinality model on classifi-
cation accuracy of the Cardinality Kernel. It can be seen that as expected, the best result

3These features are based on a spatio-temporal context region around a person. So by using our
cardinality-based model, the spatio-temporal and cardinality information are combined.

4All these methods follow the standard evaluation protocol introduced in [20].
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is achieved with ρ = 0.5. We also provide the confusion matrix for the Cardinality Kernel
method in Fig. 5.3b. Finally, two examples of recognition with the cardinality model for
crossing and waiting activities are visualized in Fig. 5.4.
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Figure 5.3: Performance of the Cardinality Kernel on collective activity dataset. (a) Clas-
sification accuracy with different values of ρ in the ratio-constrained cardinality model. (b)
Confusion matrix with ρ = 0.5 (rows are the true labels, and columns are predicated labels)

Figure 5.4: Examples of recognition with the proposed model. The annotation of each
person shows the true activity label of the scene with a tuple, indicating the MAP-inferred
action label and the corresponding marginal probability w.r.t. the the scene activity label.
-1 values denote “not” of the corresponding category; people performing other actions (left:
two people not waiting, right: people not crossing the street) are correctly given -1 labels.

5.4.2 Event Detection

We evaluate our proposed method for event detection on the TRECVIDMED11 dataset [79].
Because of temporal clutter in the videos, not all parts of a video are relevant to the under-
lying event, and the video segments might have unequal contributions to event detection.
Our framework can deal with this temporal ambiguity, i.e., when the evidence of an event is
occurring in a video and what the degree of discrimination or importance of each temporal
segment is. We represent each video as a bag of ten temporal video segments, where each
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segment is represented by pooling the features inside it. As the cardinality potential, we use
the Normal model in (5.3) with µ = 1 and σ = 0.1 to embed a soft and intuitive constraint
on the number of positive instances: "the more relevant segments in a video, the higher the
probability of occurring the event".

We follow the evaluation protocol used in [95, 90]. The DEV-T split of MED11 dataset
is used for validation and finding the hyper-parameters such as the regularization weights
in learning the cardinality model and SVM. Then, we evaluate the methods on the DEV-O
test collection (32061 videos), containing the events 6 to 15 and a large number of null (or
background events). For training, an Event-Kit collection of roughly 150 videos per event
is used, and as in [95, 90], the classifiers are trained for each event versus all the others.

We compare our methods with the kernelized latent SVM methods in [95], applied to a
structured model where the temporal location and scene type of the salient video segments
are modeled as latent variables. To have a fair comparison, we use the same set of features:
HOG3D, sparse SIFT, dense SIFT, HOG2x2, self-similarity descriptors (ssim), and color
histograms, which are simply concatenated to a single feature vector5. For training the
cardinality model, regularized maximum likelihood is used with l1-norm regularization. For
the Cardinality Kernel, histogram intersection kernel is plugged as the instance kernel. The
results in terms of average precision (AP) are shown in Fig. 5.5. It can be observed that
based on mean AP, our proposed Cardinality Kernel clearly outperforms the baselines:

•. The cardinality model of Sec. 5.3.1.

•. Kernelized SVM (KSVM) and multiple kernel learning SVM (MKL-SVM), which are
kernel methods with global bag-of-words models.

•. MI-Kernel [39], which is a multi-instance kernel method with uniform aggregation of
the instance kernels.

On the other hand, our method is comparable to the kernelized latent SVM (KLSVM)
methods in [95]. However, our model is considerably less complicated, and unlike these
methods, our proposed framework has exact and efficient inference and learning algorithms.
For example the training time for our method is about 35 minutes per event, but those
methods takes about 30 hours per event6. In addition, based on comparison on individual
events, our proposed method achieves the best AP in 6 out of 10 events.

Recently, Lai et al. [60] proposed a multi-instance framework for video event detection,
by treating a video as a bag of temporal video segments of different granularity. Since this
is the closest work to ours, we run another experiment on TRECVID MED11 to evaluate

5In the experiments of this section we compare our method with the most relevant methods, which use
the same features. By using, combining, or fusing other sets of features, better results can be achieved
(e.g. [91, 112])

6We performed our experiments on an Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz, and compared to
our previous work [95].
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Figure 5.5: The APs for events 6 to 15 in TRECVID MED 2011. The results for KSVM,
MKL-SVM, KLSVM, and MKL-KLSVM are reported from [95]. MI-Kernel is based on our
own implementation of the algorithm in [39].

performance of our algorithm compared to [60]. We use exactly the same settings as before,
but since Lai et al. [60] used dense SIFT features, we also extract dense SIFT features
quantized into a 1500-dimensional bag-of-words vector for each video segment7, where the
video segments are given by dividing each video into 10 equal parts. This is slightly different
from the multi-granular approach in [60], where both the single frames and temporal video
segments are used as the instances (single–g ∝SVM uses only single frames and multi–g
∝SVM uses both the single frames and video segments). The results are shown in Table
(5.2). Our method outperforms multi–g ∝SVM (which is the best in [60]) by around 20%.
In addition, our algorithm is more efficient, and training takes only about half an hour per
event.

Table 5.2: Comparing our proposed Cardinality Kernel method with ∝SVM algorithms
in [60] on TRECVID MED11. The best AP for each event is highlighted in bold

Event single–g ∝SVM [60] multi–g ∝SVM [60] Cardinality Kernel
6 1.9 % 3.8 % 2.8 %
7 2.6 % 5.8 % 5.8 %
8 11.5 % 11.7 % 17.0 %
9 4.9 % 5.0 % 8.8 %
10 0.8 % 0.9 % 1.3 %
11 1.8 % 2.4 % 3.4 %
12 4.8 % 5.0 % 10.7 %
13 1.7 % 2.0 % 4.7 %
14 10.5 % 11.0 % 4.9 %
15 2.5 % 2.5 % 1.4 %
mAP 4.3 % 5.0 % 6.1 %

7We use VLFeat, as in [60], though with fewer codewords (5000 in [60]).
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5.4.3 Video Summarization by Detecting Interesting Video Segments

Recently, Gygli et al. [45] proposed a novel method for creating summaries from user videos
by selecting a subset of video segments, which are interesting and informative. For this
purpose, they created a benchmark dataset (SumMe8) of 25 raw user videos, summarized
and annotated by 15 to 18 human subjects. In their proposed method, each video segment is
scored by summing the interestingness score of its frames, estimated by a regression model
learned from human annotations. At the end, a subset of video segments is selected such
that the summary length is 15% of the input video.

Video

Segment

Bag

Instances

Figure 5.6: Detecting interesting video segments. A video is modeled as a bag of sub-
segments.

In this section, we propose a new approach for creating segment-level summaries. Instead
of predicting the per-frame scores and using a heuristic aggregation operation such as “sum",
we use our multi-instance model to directly estimate the interestingness of a video segment.
The proposed approach is illustrated in Fig. 5.6. Each segment is modeled as a bag of sub-
segments, where a positive bag is a segment which has large overlap with human annotated
summaries. To represent each sub-segment, we extract HSV color histogram (with 8 × 8
bins) and bag-of-words dense trajectory features [101] (with 4000 words) for each frame
and max-pool the features over the sub-segment. Here, we summarize our method and the
baselines:

•. Ours: A segment is divided into 5 sub-segments, and the proposed Cardinality Kernel
with Normal cardinality potential (µ = 1, σ = 0.1) is used to score the segments.

•. Global Model: A global representation of each segment is constructed by max-pooling
the features inside it, and an SVM is trained on the segments.

•. Single-Frame SVM: An SVM is trained on the frames, and the score of each segment
is estimated by summing the frame scores.

•. Single-Frame SVR: This is our simulation of the algorithm in [45] but with our own
features, fixed length segments, and using support vector regression.

8The dataset and evaluation code for computing the f-measure are available at http://www.vision.ee.
ethz.ch/~gyglim/vsum/
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The top scoring 15% of segments are selected in each.
For all methods a video is segmented into temporal segments of length Pl = 1.85 seconds

(the segment length given in [45]), and histogram intersection kernel is used for training the
SVMs. To evaluate the methods, the procedure in [45] is used: leave-one-out validation and
comparison based on per segment f-measure. The results are shown in Fig. 5.7. It can be
observed that our method outperforms the baselines and is competitive with the state-of-
the-art results in [45]. In fact, although we are using general features (color histogram and
dense trajectory) we achieve a performance which is comparable to the performance in [45],
which uses specialized features to represent attention, aesthetics, landmarks, etc. Note that
the best f-measure in [45] is obtained by over-segmenting a video into cuttable segments
called superframe, using guidelines from editing theory.
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Figure 5.7: Comparison of different algorithms for segment-level summarization of the
SumMe benchmark videos. The percent scores are relative to the average human.

5.5 Summary and Conclusion

We demonstrated the importance of cardinality relations in visual recognition. To this
end, a probabilistic structured kernel method was introduced. This method is constructed
based on a multi-instance cardinality model, which can explore different levels of ambiguity
in instance labels and model different cardinality-based assumptions. We evaluated the
performance of the proposed method on three challenging tasks: collective activity recog-
nition, video event detection, and video summarization. The results showed that encoding
cardinality relations and using a kernel approach with non-uniform (or probabilistic) aggre-
gation of instances leads to significant improvement of classification performance. Further,
the proposed method is powerful, straightforward to implement, with exact inference and
learning, and can be simply integrated with off-the-shelf structured learning or kernel learn-
ing methods. As an extension to this work, in Appendix A, we show how to jointly learn
the cardianlity kernel and SVM parameters in a general multiple kernel learning framework.
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Chapter 6

Learning Ensemble Latent
Structured Models in Functional
Space

Many visual recognition tasks involve modeling variables which are structurally related.
Hidden conditional random fields (HCRFs) are a powerful class of models for encoding
structure in weakly supervised training examples. This chapter presents HCRF-Boost,
a novel and general framework for learning HCRFs in functional space. An algorithm
is proposed to learn the potential functions of an HCRF as a combination of abstract
nonlinear feature functions, expressed by regression models. Consequently, the resulting
latent structured model is not restricted to traditional log-linear potential functions or any
explicit parameterization. Further, functional optimization helps to avoid direct interactions
with the possibly large parameter space of nonlinear models and improves efficiency. As a
result, a complex and flexible ensemble method is achieved for structured prediction which
can be efficiently used in a variety of applications. We validate the effectiveness of this
method on tasks such as group activity recognition, human action recognition, and multi-
instance learning of video events.

6.1 Overview

Challenging structured vision problems necessitate the use of high-capacity models. Exam-
ples include problems such as modeling group activities or temporal dynamics in human
action recognition and internet video analysis. Recently, visual recognition has made great
strides using deep models. Deep learning has been successfully applied to image classifica-
tion [57, 89] and object detection [41]. This success arises from large-scale training of highly
non-linear functions which can induce complex models and learn powerful abstract feature
representations. However, learning non-linear functions for structured vision problems re-
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mains an open challenge. In this chapter, we present a general method to learn non-linear
representations for structured models.
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Figure 6.1: The proposed method (HCRF-Boost) learns non-linear potential functions in a
latent structured model. An example model for group activity is shown. Potential functions
relate input image regions to variables such as body pose or action/activity. Each potential
function is learned as a combination of non-linear models leading to a high-capacity model.
The colored ribbon-like lines show the decision boundaries obtained by nonlinear potential
functions.

Our method works within a graphical model framework, building an HCRF to model
structure, as depicted in Fig. 6.1. Recent efforts in this vein [94, 16, 88] have attempted to
design unified deep structured models by equipping Markov random fields (MRFs) with the
representational power of convolutional neural networks (CNNs). These methods jointly
train an MRF and a CNN by maximizing likelihood via back-propagation and stochastic
gradient descent. However, all these methods are defined for fully observed output variables
and cannot incorporate or infer dependencies on unlabeled variables in the case of weak
supervision. Full annotation of all output variables in MRFs is very costly for many visual
recognition tasks, and hence many variables remain latent, unobserved, in training.

The standard learning algorithms for latent structured models (e.g. latent SVM [31]
or HCRF [83]) are restricted to simple log-linear models, where the potential functions are
parameterized by linear combination of the input features. Thus, they lack the non-linearity
and feature abstraction power of deep models. In this work, we alleviate this problem by
proposing a general framework to learn latent structured models with arbitrary potential
functions in functional space.

We propose an algorithm based on functional gradient ascent (i.e., gradient boosting).
By using this functional approach, training a latent structured model is decoupled from
explicit representation of feature interactions in the potentially large parameter space of the
potential functions. This provides scalability and improves efficiency [24]. This decoupling
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helps to define potential functions as a combination of new abstract features encoded by
nonlinear regression models such as regression trees, kernel support vector machines, or
deep neural networks. As a result, a highly complex model can be achieved with an efficient
learning algorithm. In addition, because of the ensemble effect of combining numerous base
models, the proposed method is less prone to overfitting.

6.2 Previous Work

In this section, we review related work within learning algorithms for structured prediction
and their use in computer vision.

Learning algorithms for structured prediction: Conditional random fields (CRFs)
are among the primary tools for structured visual recognition. Nonlinear variants of CRFs
include kernel conditional random fields [59], and CRFs with deep neural network fea-
tures [27]. Dietterich et al. [24] and Chen et al. [17] proposed a boosting framework to
train CRFs with abstract features represented by regression trees. Jancsary et al. [53] in-
troduced regression tree fields, a Gaussian CRF model parameterized by regression trees.
Tompson et al. [94], Chen et al. [16], Schwing and Urtasun [88] proposed methods to com-
bine convolutional neural networks with CRF-based graphical models for deep structured
prediction.

Hidden conditional random fields [83] learn CRFs with latent variables by maximizing
the likelihood function marginalized over the hidden variables via gradient ascent. Max-
margin variants of HCRF (a.k.a. latent SVM) [31, 117, 108] use alternating minimization
strategies. Schwing et al. [87] introduced a general structured loss minimization framework
for structured prediction with latent variables. All these algorithms are used for learning
log-linear models, which limits their ability to model complex prediction tasks.

Nonlinear extensions of these algorithms have been proposed based on predefined ker-
nels, e.g. kernelized latent SVM [114], kernels on CRFs [50], or non-linear feature encoding
techniques [97]. However, the kernelized latent SVM methods have high computational
complexity and lack efficient inference algorithms, resorting to enumeration over (single)
latent variables. The CRF kernel method uses log-linear models trained similar to the
standard HCRF [83].

In contrast, our work presents a general framework for learning latent structured mod-
els, which trains HCRFs with arbitrary potential functions represented by an ensemble of
nonlinear base models. Thus, it can represent richer dependencies between the variables,
be integrated with a variety of base models, and provide efficient learning and inference
algorithms; empirically we show these can deliver superior recognition performance.
Structured prediction for group activity: Structured prediction has been extensively
used in a variety of computer vision applications. A series of recent papers has focused
on the problem of group activity recognition, inferring an activity that is performed by a
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set of people in a scene. Choi et al. [21], Lan et al. [61], and Khamis et al. [54] devised
models for spatial and temporal relations between the individuals involved in a putative
interaction. Lan et al. [61] proposed latent CRF models with optimized graph structures
for joint action-activity recognition. Amer et al. [2] proposed a hierarchical random field to
jointly model temporal and frame-wise relations of video features describing an activity in
a hierarchy of mid-level video representations.
Individual human action recognition: A variety of feature descriptors has been de-
signed to extract discriminative spatio-temporal information from depth sequences. For ex-
ample, Yang et al. [116] proposed new HOG descriptors built on depth motion maps. Wang
et al. [106] trained an actionlet ensemble model based on novel local skeleton features to
represent and recognize human actions. Xia and Aggarwal [111] introduced depth cuboid
similarity features to make codewords for depth video recognition. Yang and Tian [115]
proposed super normal vector (SNV) to describe a depth sequence with a codebook of
polynormals obtained by clustering surface normals in the sequence. We perform empiri-
cal evaluation on action recognition from depth data, showing the efficacy of our learning
approach.
Unconstrained internet video analysis: Structural models have been also successfully
used for unconstrained internet video analysis. Methods to capture the temporal structure
of high-level events need to be robust to the presence of irrelevant frames. Successful models
include Tian et al. [93] and Niebles et al. [78], who extended latent variable models in the
temporal domain. Vahdat et al. [95] composed a test video with a set of kernel matches
to training videos. Tang et al. [91] effectively combined informative subsets of features
extracted from videos to improve event detection. Bojanowski et al. [10] labeled videos
with sequences of low-level actions. Pirsiavash and Ramanan [80] developed stochastic
grammars for understanding structured events. Xu et al. [112] proposed a feature fusion
method based on utilizing related exemplars for event detection. Lai et al. [60] applied
multi-instance learning to video event detection by representing a video as multi-granular
temporal video segments.

6.3 Proposed Method: HCRF-Boost

We propose a general framework for learning non-linear latent structured models. A high-
level overview of our proposed method is as follows. We need to learn potential functions
for a structured model over inputs, latent variables, and outputs. These potential functions
control compatibilities between various settings of the variables – e.g. the relationships
between image observations and their class labels. In order to model challenging problems,
complex non-linear relationships between these variables are needed.

Figure 6.2 shows our proposed HCRF-Boost model. The potential functions are defined
as a combination of multiple nonlinear functions, obtained stage by stage. To find these
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functions we use functional gradient ascent (i.e. gradient boosting). Gradient boosting is
the functional analog of the standard gradient ascent. At each step, a functional gradient
is found by taking the derivatives of the objective function (likelihood function in our case)
directly w.r.t. the potential functions (instead of the parameters). So, at each step a new
function gt is derived, where the potential function should move in that functional direction.
In this section, we show how to take these derivatives efficiently and approximate the func-
tional gradients with nonlinear fitting functions. In the following sections the preliminaries
and details of the proposed method are explained. A summary of the resulting algorithm
is given in Alg. 2.
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Figure 6.2: Latent structured prediction with our proposed HCRF-Boost model.

6.3.1 Preliminaries

Due to space limitations, we provide very brief summaries of gradient boosting [35] and
HCRFs [83] below. Please see the corresponding references for more details.
Gradient Boosting: Gradient boosting learns a classifier F (x) =

∑
t βtft(x) by optimizing

an objective function L(y, F (x)) in a functional space by performing gradient ascent. The
optimization is approximated by a greedy stage-wise optimization of the form

(βt, ft) = arg min
β,f

N∑
n=1
L(yn, Ft−1(xn) + β f(xn)). (6.1)

using a training set {(x1, y1), · · · , (xN , yN )}. To solve this problem, first the so-called
pseudo-residuals are computed for each training instance as

f̂(xn) = ∂L(yn, F (xn))
∂F (xn) |F (x)=Ft−1(x) (6.2)
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After computing the pseudo-residuals, a new base classifier ft(x) is trained by fitting a
regression model to the training set {(xn, f̂(xn))}n, i.e., ft : xn → f̂(xn). Given this
function fixed, the multiplier βt is found simply by doing a line search. It has been shown
that since a whole model is added at each iteration of gradient boosting, a big step can be
taken to maximize the objective function [24].
Hidden Conditional Random Fields: A hidden conditional random field (HCRF) is
defined on a 3-tuple (X ∈ X ,h ∈ H, Y ∈ Y), where h is the set of latent variables, which
are not observed in the training data. Given this, the posterior probability distribution is
obtained by

P (Y |X) =
∑

h
P (Y,h|X) =

∑
h exp (F (X, Y,h))∑

Y ′,h exp (F (X, Y ′,h)) , (6.3)

where the whole graph potential function factorizes as

F (X, Y,h) =
∑
i

φi(Xi, Yi,hi). (6.4)

In the standard HCRF model proposed by [83], the potential functions are linearly param-
eterized as

φi(Xi, Yi,hi) = γi(Xi, Yi,hi)θi. (6.5)

and parameters are learned using maximum a posteriori estimation.
In this work, we alleviate the limitation of parameterizing the HCRFs and learn the

potential functions in a functional space, using a boosting approach. As a result, highly
non-linear and powerful models can be achieved.

6.3.2 HCRF-Boost: Gradient Boosting of HCRFs

Gradient boosting [35] is a non-parametric functional analog of gradient ascent. In this
approach, the derivatives of an objective function are taken with respect to the function,
and each step of the gradient boosting is regarded as training a new base learner.

In this work, we use gradient boosting for training HCRF models. For this purpose,
we maximize the likelihood function in (6.3) directly with respect to the clique potential
functions. Consequently, each potential function is written as the combination of a number
of “base potential functions":

φi(Xi, Yi,hi) =
∑
t

βt ψi,t(Xi, Yi,hi), (6.6)

where each base potential function is estimated in a stagewise manner by taking the deriva-
tives of the log likelihood function w.r.t. the potential functions (given the current model
estimation):

ψ̂i,t(Xi, Yi,hi) = ∂ logP (Y |X)
∂φi(Xi, Yi,hi)

|f=ft−1 . (6.7)
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We call this the pseudo-residual potential function. By plugging into the likelihood function
of (6.3) and using the relations in [24], we get the following functional gradients at a given
point (Xn, Y n):

ψ̂i,t(Xn
i , Yi,hi) = ∂ log

∑
h exp (f(Xn, Y n,h))
∂φi(Xn

i , Yi,hi)

−
∂ log

∑
Y ′,h exp (f(Xn, Y ′,h))
∂φi(Xn

i , Yi,hi)
=P (hi|Xn, Y n)1(Yi = Y n

i )− P (hi, Yi|Xn)

∀ i, Yi,hi.

(6.8)

Given the finite training set Dtr = {(Xn, Y n)}Nn=1 these are point-wise functional gra-
dients, which are only defined at the training data points [35]. However, they provide a
set of functional gradient training examples D(Yi,hi)

i,t = {(Xn, Y n), ψ̂i,t(Xn
i , Yi,hi)}n, which

can be fitted by a regression model in order to make smooth approximate pseudo-residual
potential functions:

ψi,t(Xi, Yi,hi) = arg min
ψi

∑
n

(
ψi(Xn

i , Yi,hi)− ψ̂i,t(Xn
i , Yi,hi)

)2

∀ i, Yi,hi.
(6.9)

This fitting is done by learning the parameters of a regression model for each possible value
of the output and hidden variables, i.e.,

ψi,t(Xi, Yi,hi) = g(Xi;θ(Yi,hi)
i,t ),

θ
(Yi,hi)
i,t = arg min

θ

∑
n

(
g(Xn

i ;θ)− ψ̂i,t(Xn
i , Yi,hi)

)2

∀ i, Yi,hi.

(6.10)

Hence, in the most general case, the number of trained models can grow exponentially with
the number of variables in the largest clique. However, in practice, where common HCRF
models are used, this procedure is reduced to training a few models (see next section).
Finally, given the resulting functions, the potential function at the current iteration is
updated as

φi(Xi, Yi,hi)← φi(Xi, Yi,hi) + βt ψi,t(Xi, Yi,hi), (6.11)

where the the step-length parameter βt can be found by optimizing the likelihood function
with a simple line search1.

1However, there is both theoretical and empirical evidence that this parameter can be safely set to a
small constant value (e.g., 0.1) [11]. In all our experiments, we follow this rule.
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Algorithm 2 HCRF-Boost Algorithm
1: Input: Training data {(Xn, Y n)}Nn=1.
2: Initialize the potential functions φi(Xi, Yi,hi) = 0.
3: repeat
4: for each potential function φi do
5: Compute the pseudo-residual potentials ψ̂i,t according to (6.8) for all training ex-

amples.
6: Train new base potential functions ψi,t according to (6.10) by fitting the input

training examples to the pseudo-residual potentials.
7: Update the potential function: φi ← φi + βt ψi,t.
8: end for
9: until converged or maximum number of iterations

6.3.3 HCRF-Boost for Unary and Pairwise Potentials

In the previous section, we described the HCRF-Boost algorithm for general HCRF models.
In this section, a more detailed explanation of the algorithm is provided for HCRF models
with unary and pairwise potentials, which are commonly used in visual recognition [83].
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Figure 6.3: A hidden conditional random field with unary and pair-wise potential functions.

A graphical representation of this model is shown in Figure 6.3. This graph is composed
of the input observations X = {x0,x1, · · · ,xm}, the output label Y , and the hidden labels
h = {h1, · · · , hm}. The input observations are feature descriptors extracted from an image
or video, where x0 is a global feature descriptor which represents the whole input, while
xi (i 6= 0) are local observations. Each local observation xi is connected to its hidden label
hi. The connections between the hidden labels is represented by a graph G = (V, E), where
the edges (i, j) ∈ E denote the links between the hidden labels hi and hj . Finally, all hidden
labels are linked to the output label Y . The goal is to predict the output label Y , given the
input observations X and the structural constraints of the induced graph, by modeling the
posterior probability P (Y |X).
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Given this model, the whole graph potential function takes the following form:

f(X, Y,h) = φ0(x0, Y ) +
m∑
i=1

φ1(xi, hi)

+
m∑
i=1

φ2(Y, hi) +
∑

(i,j)∈E
φ3(Y, hi, hj).

(6.12)

The learning process is to find the potential functions φ0, φ1, φ2, φ3 which maximize the
likelihood function, by taking the functional gradients. Following the formula derived in
(6.6), the pseudo-residuals of each potential function for a given data point (Xn, Y n) at
iteration t are obtained by2:

ψ̂0,t(xn0 , Y ) = 1(Y = Y n)− P (Y |Xn) (6.13)

ψ̂1,t(xni , hi) = P (hi|Xn, Y n)− P (hi|Xn) (6.14)

ψ̂2,t(Y, hi) = P (hi|Xn, Y n)1(Y = Y n)

− P (hi, Y |Xn) (6.15)

ψ̂3,t(Y, hi, hj) = P (hi, hj |Xn, Y n)1(Y = Y n)

− P (hi, hj , Y |Xn) (6.16)

∀ i ∈ V, (i, j) ∈ E , Y ∈ Y, hi ∈ H.

Note that all these probabilities are the marginal probabilities which can be found by sum-
product inference of the CRFs. For the popular CRF models that we use in our experiments,
such as tree-structured graphs or cardinality models, these marginals can be inferred exactly
in linear or linearithmic time.

2Although the behind-the-scenes steps to derive the functional gradients are non-trivial, the results are
intuitive. For example, (6.13) says that if Y is observed in the training data (i.e., Y = Y n), P (Y |Xn) should
be equal to 1 to make the subgradients zero and maximize the likelihood. Likewise, (6.14) says that the
probability of the latent variables, with and without Y being observed, should become equal. In fact, these
functional gradients are representing the errors but on a probability scale.
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Next, by solving the fitting problem of (6.10), it can be shown that the smooth approx-
imate functions are found as

ψ0,t(x0, Y = a) = g(x0,θ
(a)
0,t ) : {xn0 → ψ̂0,t(xn0 , a)}Dtr

∀ a ∈ Y (6.17)

ψ1,t(xi, hi = b) = g(xi,θ(b)
1,t ) : {xni → ψ̂1,t(xni , b)}Dtr,V

∀ b ∈ H (6.18)

ψ2,t(Y = a, hi = b) = mean {ψ̂2,t(a, b)}Dtr,V

∀ a ∈ Y, b ∈ H (6.19)

ψ3,t(Y = a, hi = b, hj = c) = mean {ψ̂3,t(a, b, c)}Dtr,E

∀ a ∈ Y, b ∈ H, c ∈ H. (6.20)

The first set of functions in (6.17) and (6.18) are trained by a regression model. So, only
|Y|+ |H| functions should be trained. However, the next functions in (6.19) and (6.20) are
simply obtained by taking the mean over all training examples.

6.3.4 Discussion

The fitting in (6.17) and (6.18) can be performed by training any regression model such as
regression trees, kernel support vector machines, or even deep neural networks. In practice
training a support vector regression (SVR) model is faster than trees (especially for large
feature vectors). Thus, in all our experiments we used SVR models. However, note that
tree models can help for feature selection as well.

Further, for all the visual recognition tasks in Section 6.4, we use task-specific hand-
crafted features. But, by using convolutional neural networks (CNNs) for model fitting,
deep features can be also learned. In fact, employing CNNs with our method leads to an
extension of the recent algorithms for learning deep structured models [88, 16]. These algo-
rithms maximize the likelihood function P (Y |X,w) = exp (f(X,Y,w))

Z(X,w) w.r.t. the parameters
w via gradient ascent and backpropagation, where f(X, Y,w) is a CNN parameterized by
w. However, HCRF-Boost with CNNs extends these algorithms by (1) incorporating the
structured hidden variables and (2) learning via functional gradient ascent (i.e. gradient
boosting).

6.3.5 Some Implementation details

In our implementation, we used stochastic gradient boosting [36]. In this variation of gradient
boosting, at each step, a random subset of training data is selected for computing the
pseudo-residuals and fitting the base models. As a result, gradient boosting is combined with
bagging (similar to random forest). The incorporation of this randomization is advantageous
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for both improving the accuracy and speeding up the algorithm [36]. In all the experiments
we subsampled 90% of data (without replacement) at each iteration.

In the proposed HCRF-Boost algorithm, the potential functions may be initialized to
zero at the first iteration. However, because of the nonconvexity of the likelihood optimiza-
tion problem, a more smart initialization can improve the results (Note that the stochastic
gradient ascent algorithm already helps to avoid some local optima). In our empirical stud-
ies we found that initializing the potentials with a model poorly trained by the standard
HCRF algorithm [83] or with a global model trained by SVM can yield decent results in
a few iterations (even 10 iterations). In fact, since each iteration of gradient boosting
adds an entire model, a big step can be taken at each iteration [24]. In all experiments of
Section 6.4.1 we used 50 iterations with β = 0.1.

6.3.6 Computational Complexity

The computational complexity of each iteration of gradient boosting comprises two parts:
(1) computing point-wise pseudo-residuals and (2) training the base models. As discussed
in Section 6.3.3, the former is obtained by inferring the CRF model for each data point
and finding the marginal probabilities. We indicate the computational time of inferring the
marginals of a CRF by Tinfer. For example, for the tree/chain-structured CRF models of
Section 6.4.1 and 6.4.2, Tinfer = O(|E||Y||H|2) using belief propagation. For the cardinality
model used in Section 6.4.3, Tinfer = O(m log (m)), where m is the number of instances
in a bag. Consequently, the total computational time of this part is obtained by summing
over the whole data:

∑
n T

n
infer.

Next, the base models should be fitted to the point-wise pseudo-residuals. We assume a
regression model can be trained to fit a set of training examples of size |S| in O(|S| d) time,
where d is the size of the input feature vector. Given this assumption, each function ap-
proximation in (6.17) and (6.18) takes O(N d) and O(

∑
n |En| d) time, respectively. Finally,

the computational time of fitting all functions would be |Y|O(N d) + |H|O(
∑
n |En| d).

We performed our experiments on an Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz.
As a numerical example, for the collective activity dataset, used in the experiments of
Section 6.4.1 (which consists of 1908 training examples with average 5 local observations
per example and the feature vectors are 240 dimensional), the training time was around
10 seconds per iteration. For the nursing home dataset of Section 6.4.1 with 1910 training
examples and average 2 local obsevations per example and 5D feature vectors, the trainig
time was around 2 seconds per iteration.

6.4 Experiments

We provide empirical results on three different tasks: group activity recognition, human
action recognition, and video event detection.
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6.4.1 Spatial Structured Models: Group Activity Recognition

In this section, our proposed HCRF-Boost algorithm is used to train HCRFs which model
spatial relations between individuals doing actions in a scene to recognize high-level group
activities. Hence, the individual actions provide the context to infer the whole group activ-
ity. We run experiments on two datasets: collective activity dataset [21] and nursing home
dataset [61]. Example HCRF models for this task are shown in Figure 6.4. This model is
composed of nodes representing the people, actions, and the group activity. The hidden
nodes are the individual actions which are linked to each other with a tree-structured graph,
obtained by running maximum spanning tree.
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(a) Collective activity recognition

ℎ� ℎ� ℎ�
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ℎ�

�

(b) Nursing home fall detection

Figure 6.4: Group activity recognition with spatial structured models. (a) An example
HCRF model from collective activity dataset. (b) An example HCRF model from nursing
home dataset.

Collective Activity Dataset

The Collective Activity Dataset [21] comprises 44 videos (about 2500 video frames) of
crossing, waiting, queuing, walking, and talking. Our goal is to classify the collective activity
in each frame. Each person is represented by the action context feature descriptor proposed
in [61]. We follow the same experimental settings as used in [61], i.e., the same 1/3 of the
video clips were selected for test and the rest for training. As the latent models, we use
the HCRF shown in Figure 6.4a with 5 hidden labels. The result of our method is shown
in Table 6.1 and compared with the following methods3: (1) SVM on global bag-of-words,
(2) latent SVM method in [61], and (3) HCRF (our own baseline). We also visualize some
examples of recognition with our method in Figure 6.5.

3These methods follow the standard multiclass classification evaluation protocol in [21, 61].

88



Table 6.1: Comparison of classification accuracies of different algorithms on collective ac-
tivity dataset. Both multi-class accuracy (MCA) and mean per-class accuracy (MPCA) are
shown because of class size imbalance.

Method MCA MPCA
Global bag-of-words with SVM [61] 70.9 68.6
Latent SVM with optimized graph [61] 79.7 78.4
HCRF 76.2 75.2
HCRF-Boost (our proposed method) 82.5 79.4

Figure 6.5: Examples of recognition with the proposed HCRF-Boost method. Each figure
is annotated by the predicted collective activity. Also each individual is annotated by a
tuple, indicating the inferred hidden label and its probability. Since the hidden labels are
not observed during training, they have been represented symbolically by 1, 2, 3, 4, 5.
However, interestingly, they have been learned to semantically categorize the individual
actions (i.e., 1: talk; 2: walk; 3: cross; 4: wait; 5:queue). For example, in the first figure
from left, four people are crossing the street while the two others are walking in the sidewalk.
In the second figure, four people are waiting and one is crossing. In the third figure, four
people are queuing in the line and one person is walking to join the lineup. In the fourth
and fifth figures, all the individuals are walking and talking, respectively.

Nursing Home Dataset

In this section, we evaluate our method for activity recognition in a nursing home. The
dataset we use [61] contains scenes in which the individuals might be performing any of five
actions: walking, standing, sitting, bending, or falling. However, the goal is to detect the
whole scene activity, i.e., if any person is falling or not.

The dataset has 22 video clips (12 clips for training and 8 clips for test) with 2990
annotated frames, where about one third of them are assigned the “fall” activity label. We
use the same feature descriptor as used in [61]. In short, this feature vector is obtained by
concatenating the score of SVM classifiers trained for recognizing each of the five actions
on the training dataset. Similar to the previous section, we use the HCRF model shown
in Figure 6.4b with five hidden labels. The results in terms of classification accuracy and
average precision are shown in Table 6.2. Again, we compare our method with a global
bag-of-words model, latent SVM, and standard HCRF algorithm.
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Table 6.2: Comparison of different algorithms on the nursing home dataset in terms of
average precision (AP), mean per-class accuracy (MPCA), and multi-class accuracy (MCA).
Note that because of the significant class size imbalance between the two classes, MCA is
not an informative metric in this task

Method AP MPCA MCA
Global bag-of-words [61] 43.3 52.4 48.0
Latent SVM [61] 48.8 67.4 71.5
HCRF 44.4 66.3 75.2
HCRF-Boost (ours) 49.6 73.0 75.4

6.4.2 Temporal Structured Models: Human Action Recognition

In this section, we apply our method for human action recognition with chain-structured
HCRFs, capturing the temporal dynamics of the action. A graphical model of this task is
illustrated in Figure 6.6. This HCRF consists of the input nodes, representing temporal
segments of a depth sequence, connected to the hidden-state nodes. There is also a root
potential function to globally model the interaction between the whole action sequence and
the action label.
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Figure 6.6: The HCRF model for human action recognition from a depth sequence.

We evaluate the proposed model on the MSRAction3D dataset [68]. This dataset has
567 depth map sequences of 20 different actions performed by 10 subjects. The actions
are movements common in gaming such as “hand catch", “forward punch", “draw tick",
“tennis swing". As the features, we use the super normal vector (SNV) descriptors [115].
But, instead of the raw SNV features, we convert them into SVM scores and make a
discriminative feature descriptor, as in Section 6.4.1.

The experiments were conducted by dividing each depth sequence into eight equal tem-
poral segments and using the HCRF model of Figure 6.6 with 5 hidden states for each seg-
ment. To have a fair comparison we followed the same experimental protocol as [115, 106].
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The results are shown in Table 6.3 and compared with the state-of-the art methods for
depth-based action recognition. Note that the global model4 and HCRF algorithm are our
own baselines.

Table 6.3: Comparison of classification accuracies of different algorithms on MSRAction3D
dataset.

Method Accuracy
Bag of 3D Points [68] 74.70%
Random Occupancy Pattern [105] 86.50%
Actionlet Ensemble [106] 88.20%
Depth Motion Maps [116] 88.73%
DSTIPv [111] 89.30%
Skeletal [98] 89.48%
Pose Set [100] 90.00%
Moving Pose [119] 91.70%
DMM-LBP-DF [15] 93.0%
SNV [115] 93.09%
Our global model (using SNV) 92.73%
HCRF (using SNV) 91.64%
HCRF-Boost (using SNV) 94.18%

6.4.3 Cardinality Models for Multi-Instance Learning: Multimedia Event
Detection

Multiple instance learning (MIL) aims to recognize patterns from weakly supervised data.
Contrary to standard supervised learning, where each training instance is labeled, in the
MIL paradigm a bag of instances share a label, and the instance labels are hidden. In
Chapters 4 and 5, we introduced HCRF models for MIL by incorporating cardinality-based
potential functions. These cardinality potentials permit the modeling of the counts of inputs
that contribute to an overall label.

A graphical representation of the cardinality model is shown in Figure 6.7. Each instance
and its label are modeled by two nodes in a clique. The potential function of this clique (φI)
specifies a classifier for an individual instance. There is also an optional clique potential
between the global representation of the whole bag and the bag label (φB). Finally, a third
clique potential (φC) contains all instance labels and the bag label. This clique is used to
define what makes a bag positive or negative. Varying this clique potential will lead to
different multi-instance assumptions. To this end, two different cardinality-based functions

4Our global model is the same as the model proposed in [115] for SNV. However, we could not get the
same accuracy (92.73 vs 93.09) with our duplication of their experiments.
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Figure 6.7: A graphical representation of the cardinality model. The instance labels are
hidden variables.

are defined, one for positive bags (C(+1)) and one for negative bags (C(−1)):

φC(Y,h) = C(Y )(
∑
i

hi). (6.21)

In general, C(+1) and C(−1) could be expressed by any cardinality function which can model
MIL constraints. However, in our work we focus on the Normal cardinality model:

C(+1)(c) =
(
−( c
m
− µ)2/2σ2

)
,

C(−1)(c) =
(
−( c
m

)2/2σ2
)
.

(6.22)

The parameter µ in this model controls the ratio of positive labeled instances in a positive
bag.

In this work, we use our proposed HCRF-Boost to train these cardinality models. We
evaluate our method for event detection on the challenging TRECVID MED11 dataset [79].

Recently, Lai et al. [60] proposed novel multi-instance methods (single–g ∝SVM and
multi–g ∝SVM) for video event detection, by treating a video as a bag of temporal video
segments of different granularity (single–g ∝SVM uses only single frames but multi–g ∝SVM
uses both the single frames and video segments). In Chapter 5, we followed a similar MIL
approach to video event detection by embedding the cardinality models into a powerful
kernel, “Cardinality Kernel.” We evaluate the performance of our HCRF-Boost algorithm
compared to these methods. In our framework, each video is treated as a bag of ten temporal
video segments, where each segment is represented by pooling the features inside it. As the
cardinality potential, we use the Normal model in (6.22) with µ = 1 and σ = 0.1 to embed
a soft and intuitive constraint on the number of positive instances: "the more relevant
segments in a video, the higher the probability of the event occurring".
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Similar to the experiments in [60, 50], we use dense SIFT features quantized into bag-
of-words vectors for each video segment5. The results are shown in Table (6.4). The HCRF
method (used to train the cardinality model) performs poorly in this task because of using
a linear feature representation. Our method outperforms multi–g ∝SVM (which is the best
in [60]) by around 25%. It can be also observed that HCRF-Boost is comparable with the
Cardinality Kernel method. Note that the Cardinality Kernel only induces nonlinearlity
to bag classification and still has log-linear models for instance classification. Further, its
computational complexity grows quadratically with the number of instances, and needs
quadratic space w.r.t. the number of bags. However, HCRF-Boost is a general and flexible
method, learns nonlinear potential functions, and provides scalability and efficiency.

Table 6.4: Comparing our proposed HCRF-Boost with ∝SVM algorithms in [60] and the
Cardinality Kernel in on TRECVID MED11. The best AP for each event is highlighted in
bold

Event single–g ∝SVM
[60]

multi–g ∝SVM
[60]

Cardinality
Kernel [50] HCRF HCRF-Boost

6 1.9 % 3.8 % 2.8 % 1.2 % 2.6 %
7 2.6 % 5.8 % 5.8 % 1.8 % 5.3 %
8 11.5 % 11.7 % 17.0 % 9.7 % 22.4 %
9 4.9 % 5.0 % 8.8 % 3.0 % 6.3 %
10 0.8 % 0.9 % 1.3 % 0.8 % 1.1 %
11 1.8 % 2.4 % 3.4 % 1.3 % 3.7 %
12 4.8 % 5.0 % 10.7 % 4.0 % 11.3 %
13 1.7 % 2.0 % 4.7 % 0.8 % 4.7 %
14 10.5 % 11.0 % 4.9 % 1.4 % 3.7 %
15 2.5 % 2.5 % 1.4 % 1.3 % 1.6 %
mAP 4.3 % 5.0 % 6.1 % 2.5 % 6.3 %

6.5 Conclusion and Summary

We presented a novel and general framework for learning latent structured models. This
algorithm uses gradient boosting to train a CRF with hidden variables in functional space.
The functional approach helps to learn the structured model directly with respect to the po-
tential functions without direct interaction with the potentially high-dimensional parameter
space. By using this method, the potential functions are learned as an ensemble of nonlin-
ear feature functions represented by regression models. This introduces nonlinearity into
the model, enhances its feature abstraction and representational power, and finally reduces
the chance of overfitting (due to the ensemble effect). We evaluated the performance of

5We use VLFeat, as in [60, 50], with the same number of codewords as [50] but with fewer codewords
than [60] – 1500 for ours but 5000 in [60]). Note that this is not the best setting for the SIFT features. For
example, if the codewords are increased to 20,000, the mean average precision is nearly doubled. Also by
combining or fusing other sets of features, better results can be achieved (e.g. [91, 112]).
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the proposed method on three challenging tasks: group activity recognition, human action
recognition, and multimedia video event detection. The results showed that our nonlinear
ensemble model leads to significant improvement of classification performance compared to
the log-linear structured models. Further, the proposed method is very flexible and can be
simply integrated with a variety of off-the-shelf nonlinear fitting functions.
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Chapter 7

Conclusions and Future Directions

The primary focus of this dissertation was to propose novel and flexible frameworks for
multiple instance learning. These frameworks can model a variety of multi-instance as-
sumptions, including the standard assumption, ratio-constrained assumptions, probabilistic
cardinality assumptions, linguistic assumptions, and metadata assumptions. It was shown
that encoding these general multi-instance assumptions and cardinality constraints in visual
recognition can improve recognition performance by either capturing the intrinsic relations
in the problems or increasing robustness against clutter and ambiguity. We demonstrated
the efficacy of the proposed frameworks in various applications such as image classification,
human group activity recognition, human action recognition, cyclist helmet recognition,
unconstrained video event detection, and video summarization.

In Chapter 3, a boosting framework was proposed which can softly explore different
levels of ambiguity in multi-instance data using linguistic aggregation functions. Next, in
Chapter 4, we introduced a class of probabilistic graphical models, namely multi-instance
cardinality models, which can encode any cardinality-based relations between instance la-
bels. They can also integrate the instance-level and bag-level information in a bag by
capturing the interactions and dependencies between the local and global representations of
the bag. Further, efficient and exact inference of the cardinality models makes it tractable
to perform structured learning and prediction in real-world computer vision applications.
We proposed novel learning algorithms for training the cardinality models. A latent max-
margin methods was introduced in Chapter 4. Next, in Chapter 5, a kernel was defined
on the cardinality models to classify bags in a discriminative vectorial embedding space.
Finally, we proposed a gradient boosting algorithm for learning general hidden conditional
random fields in Chapter 6. As a special case, the cardinality models can be trained by
using this algorithm.
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7.1 Future Directions

The following directions can be taken in the future to extend the proposed frameworks.

Integrating spatial, temporal and cardinality relations in a unified model: The
proposed graphical model in Chapter 4 can be extended by embedding new potentials
which capture spatial or temporal relations between instances. For example, the spatial
potentials can be used to model the spatial relations between the individuals in an image.
On the other hand, temporal potentials can be used to model the temporal relations
between frames of a video. The only problem with adding these potentials is that the
inference becomes more complicated. One solution would be to employ dual decomposition.

Deep cardinality models for multiple instance learning: Inspired by the recent
success of deep learning methods [9] in computer vision applications, proposing deep multi-
instance learning methods seems fruitful. Recently, Wu et al. [110] proposed deep MIL
models. However, their models are not as general as our proposed cardinality models.
One directions is to propose learning algorithms for deep hidden conditional random fields,
which can be consequently used to train deep multi-instance cardinality models. Actually,
our proposed HCRF-Boost algorithm in Chapter 6 can be easily integrated with deep
models. However, we have not evaluated this method in an end-to-end learning problem
yet.

HCRF Kernels for latent structured prediction: The proposed kernel in Chapter 5
can be extended to classify any HCRF (not necessarily cardinality models). The intuition
is that instead of aggregating over instance kernels, the aggregation should be taken over
clique kernels. By computing this kernel, the HCRF model is implicitly mapped to a
highly discriminative and possibly infinite-dimensional space, where margin maximization
and structured prediction can be performed easily. Note that the kernel learning algorithm
proposed in Appendix A can be also extended to learn these new kernels. As a result, a
kernel learning method is obtained for latent structured prediction. However, a major
drawback to kernel methods is that they need quadratic space w.r.t. the size of training
data.
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Appendix A

Joint Cardinality Kernel Learning
and SVM Training

In this chapter, we show how to jointly learn the parameters of the Cardinality Model (θ)
embedded in the Cardinallity kernel, integrated with a kernel SVM classifier. As a result,
instead of separate pre-training of a kernel by likelihood maximization of the Cardinality
Model, the Cardinality Kernel is directly trained for the target max-margin classification
problem. This joint learning algorithm forms the instance-level labeling assignments and the
bag-level discriminative classification together, with a direct goal of improved classification
performance. In the experiments, we empirically show that this joint learning can improve
classification results.

A.1 The Proposed Method: Cardinality Kernel Learning

Given a parameterized kernel kθ(Xp,Xq) = Φθ(Xp).Φθ(Xq), the goal is to learn a bag clas-
sification function f(X) = wtΦθ(X) + b to predict the binary bag label Y = sign (f(X)) ∈
{−1,+1}. To this end, we follow the generalized multiple kernel learning framework [96] to
optimize the SVM primal objective function w.r.t. the classifier parameters w and b, and
the kernel parameters θ. First the SVM primal is rewritten as a nested optimization

min
θ
T (θ),

where T (θ) = min
w,b

1
2‖w‖

2
2 + C

∑
n

max (0, 1− Ynf(Xn)) + r(θ).
(A.1)

In the outer optimization the kernel parameters θ are optimized, and in the inner optimiza-
tion the SVM learning weights are estimated. To solve this problem in a gradient descent
approach, it is required to calculate ∇θT . Using the duality theorem, it is shown that
∇θT = ∇θW [96], where W is the dual formulation of T :

W (θ) = max
α

1tα− 1
2α

tYKθYα+ r(θ),

subject to 1tYα = 0, 0 ≤ α ≤ C,
(A.2)
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and α is the vector of dual variables, Y is a diagonal matrix made up of all training bag
labels, and Kθ is the kernel matrix of all training bag pairs for a given θ. It is proven in
[22, 14] that if k, r, ∇θk and ∇θr are smooth functions of θ and if α∗, which is the solution
to the dual maximization problem in (A.2), is unique, ∇θW exists, and the derivatives are
expressed by

∂T

∂θd
= ∂W

∂θd
= r

∂θd
− 1

2α
∗tY∂Kθ

∂θd
Yα∗. (A.3)

Note that α∗n is zero except for the support vectors, and consequently, ∂Kθ
∂θd

is only required
to be computed for the support vectors. This can significantly reduces the computational
cost of the algorithm, especially, if it is integrated with ideas such as reduced support
vector machines (RSVM) [62]. Using the derivatives in a coordinate descent approach,
learning is an iterative procedure of alternating between finding α∗ by a standard kernel
SVM dual optimization in (A.2) given θ fixed, and next updating θ by moving in the
direction of derivities calculated in (A.3) given α∗ from the previous step. Note that if the
L1 regularization function r(θ) = λ‖θ‖1 is desired, the smooth L1-norm approximation [86]
should be employed to satisfy the necessary conditions.

To use this algorithm, the key issue is to calculate the derivatives of the kernel matrix
Kθ = [kθ(Xp,Xq)]N×N w.r.t. the learning parameters θd:

∂Kθ

∂θd
=
[
∂kθ
∂θd

(Xp,Xq)
]
N×N

. (A.4)

The derivatives of each element of the kernel matrix are given by

∂kθ
∂θd

(Xp,Xq) =
∂k̃θ
∂θd

(Xp,Xq)√
k̃θ(Xp,Xp)

√
k̃θ(Xq,Xq)

−
kθ(Xp,Xq) ∂k̃θ

∂θd
(Xp,Xp)

2k̃θ(Xp,Xp)
−
kθ(Xp,Xq) ∂k̃θ

∂θd
(Xq,Xq)

2k̃θ(Xq,Xq)
,

(A.5)

where

∂k̃θ
∂θd

(Xp,Xq) =
mp∑
i=1

mq∑
j=1

kx(xpi,xqj)

(
∂Pθ(ypi|Xp)

∂θd

∣∣∣
ypi=1

· Pθ(yqj = 1|Xq) + Pθ(ypi = 1|Xp) ·
∂Pθ(yqj |Xq)

∂θd

∣∣∣
yqj=1

+ ∂Pθ(ypi|Xp)
∂θd

∣∣∣
ypi=0

· Pθ(yqj = 0|Xq) + Pθ(ypi = 0|Xp) ·
∂Pθ(yqj |Xq)

∂θd

∣∣∣
yqj=0

)
.

(A.6)

So, the only thing needed is to find ∂Pθ(yi|X)
∂θd

for all yi in a bag X. Actually, calculating
these derivities is not straightforward, but taking derivities of logPθ(yi|X) is quite similar
to taking the derivatives of the log likelihood function in HCRFs [83]. Thus, by exploiting
the relations in [83] and the chain rule ∂logPθ

∂θd
= 1

Pθ

∂Pθ
∂θd

, it can be shown that

∂Pθ(yi|X)
∂θd

= Pθ(yi|X)
(∑

i′

∑
yi′

Pθ(yi′ |yi,X)xi′d yi′ −
∑
i′

∑
yi′

Pθ(yi′ |X)xi′d yi′
)
. (A.7)
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The calculation of Pθ(yi|X) was described in (5.13). Pθ(yi′ |yi,X) can be calculated in the
same way except that one of the hidden variables has been observed (i.e., canceled out), and
consequently the cardinality potential of the resulting model (which has m− 1 unobserved
variables) has been modified accordingly. Thus, for each i and all i′, Pθ(yi′ |yi,X) is also
computed in O

(
m log2m

)
time.

Putting all above together we propose a new algorithm, namely Cardinality Kernel Learning.
The pseudo-code of this algorithm is provided in Algorithm 3.

Algorithm 3 Cardinality Kernel Learning
Input: Training data {(Xn, Yn)}Nn=1, Cardinality potential parameters µ and σ, Regu-
larization parameters λ and C, Maximum number of iterations.
Initialize θ randomly.
repeat

K = [kθ(Xp,Xq)]N×N .
Find α∗ by solving the standard kernel SVM dual optimization in (A.2) with K.
Find ∂K

∂θd
using (A.4), (A.5), (A.6), (A.7).

θd = θd − η( r
∂θd
− 1

2α
∗tY ∂K

∂θd
Yα∗).

until converged or maximum number of iterations

A.1.1 Computational Complexity

Here, we show the computational complexity of the Cardinality Kernel Learning algorithm.
According to what was explained in Section A.1, for a given bag X, computing P (yi′ |yi,X)
for all the instances takes O(m2 log2m) time, and so computation of all the derivatives in
(A.7) takes O(m2 log2m + m2 d). Consequently, the time complexity of finding the kernel
derivatives in (A.6) and (A.5) is O(mpmq d+m2

p log2mp+m2
p d+m2

q log2mq+m2
q d). Using

this, the kernel matrix derivatives are computed in O(N2
sv m̄

2 d+Nsv m̄
2 log2 m̄) time, where

Nsv is the number of support vectors. Finally, with the assumption that the quadratic
programming in (A.2) takes O(N3), the whole computational complexity of the algorithm
would be O(NiterN

2
sv m̄

2 d+NiterNsv d m̄
2 log2 m̄+NiterN

3) for Niter iterations.

It is seen the running time of the algorithms is dependent on different parameters, includ-
ing number of bags, number of support vectors, number of instances per bag, number of
iterations, etc. However, as a numerical example, we show in Table A.1 the running time
in seconds for different methods on the Musk1 dataset (introduced in Section A.2.1), using
the termination criterion of less than 0.01 change in objective function. To remove the
effect of number of iterations in the reported running times, we also provide the average
training time per function evaluation (i.e., evaluating objective function + gradient func-
tion). Note that Musk1 has 92 bags with about 5 instances per bag, and the results are
the averaged time of 10 runs of cross-validation. The experiment was performed on a 64
bit Linux machine with 8 cores @ 3.40GHz and 16GB system memory.

A.2 Experiments
In this section, the performance of the proposed methods is evaluated on different datasets.
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Table A.1: Running time for different methods on Musk1 dataset

Method Cardinality
Model

Cardinality
Kernel

Cardinality Kernel
Learning

Average training time for each
training fold (s) 115.17 119.16 424.30

Average prediction time for each
test fold (s) 1.53 1.64 1.66

Average training time per function
evaluation (s) 1.72 1.72 9.84

A.2.1 MIL Benchmark Datasets

The standard MIL benchmark datasets are the Elephant, Fox, Tiger image categorization
datasets [6], and the Musk1 and Musk2 drug activity prediction datasets [25]. Though
dated, these are the standard benchmark on which MIL algorithms are evaluated. In the
image data sets, each bag is an image, and the instances inside the bag represent 230-D
feature vectors of different segmented blobs of the image. These data sets contain 100
positive and 100 negative bags. Musk1 has 47 positive bags and 45 negative bags with
about 5 instances per bag. Musk2 has 39 positive bags and 63 negative bags with variable
number of instances in a bag, ranging from 1 to 1044 (average 64 instances per bag). In
all the experiments, we have preprocessed datasets by scaling the features of the original
datasets to the range [0, 1]. Musk1 dataset has been prepared for the purpose of drug
activity prediction, in which the molecules are classified into “musk" or “non-musk" type.
In fact, because of twisting or bending, each molecule can have different configurations (i.e.
shapes). However, it is unknown or significantly hard to figure out which configuration
results in the musk label. Thus, each molecule is represented as a bag of configurations,
where in a positive bag at least one of the configurations is of musk type and in a negative
bag all the configurations are of non-musk type. In the Musk data set, the instances inside
each bag describe 166-D feature vectors of the low-energy configurations of a molecule.
We run our methods with Normal cardinality potentials where σ is set to 0.1 and µ was
estimated by grid search in {0.1, 0.2, · · · , 1.0} for the Cardinality Model (the same values
were then used for the Cardinality Kernel and the Cardinality Kernel Learning methods).
The regularization weights λ and C are also roughly optimized on 10-fold cross-validation
accuracy. As the primitive instance kernels in the Cardinality Kernel we use RBF kernel,
similar to the MI-Kernel setting in [39].

The results are reported based on 10-fold cross-validation classification accuracy and com-
pared with the state-of-the-art MIL methods in Table A.2. It can be seen that the Car-
dinality Kernel Learning algorithm performs well compared to the other methods. More
specifically, it achieves the best accuracy on the Elephant, Fox, and Tiger data sets. In
addition, the Cardinality Kernel alone is by and large comparable to the best methods
although it is more computationally efficient than the Cardinality Kernel Learning method.
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Table A.2: Comparison between state-of-the-art MIL methods. The best and second best
results are highlighted in bold and italic face respectively.

Method Elephant Fox Tiger Musk1 Musk2 Average
Cardinality Model 84 65 86 81 83 79.8
Cardinality Kernel 88 63 87 89 89 83.2
Cardinality Kernel Learning 89 71 88 89 89 85.2
MIMN [46] 89 64 87 86 90 83.2
MIRealBoost [47] 83 63 73 91 77 77.4
ClassSetMaxRBMXOR [71] 88 60 83 84 84 79.8
MI-CRF [23] 85 68 83 88 85 81.8
MIGraph [121] 85 61 82 90 90 81.6
miGraph [121] 87 62 86 90 90 83.0
ALP-SVM [40] 84 66 86 86 86 81.6
MILES [18] 81 62 80 88 83 78.8
MI-Kernel [39] 84 60 84 88 89 81.0
mi-SVM [6] 82 58 79 87 84 78.0
MI-SVM [6] 81 59 84 78 84 77.2

A.2.2 Collective Activity Dataset

In this section, we perform experiments on the collective activity dataset [21], which com-
prises 44 videos (equivalent to about 2500 video frames) of crossing, waiting, queuing,
walking, and talking. Our goal is to detect the single collective activity in each frame,
where the collective activity is the action that the majority of people in the scene are doing.
To this end, we model the scene as a bag of people represented by the action context feature
descriptors developed in [61], and use our proposed algorithms with the majority cardinality
potential model (i.e., the ratio-constrained model with ρ = 0.5).

Table A.3: Comparing different methods based on classification accuracy (in percent) on
the collective activity dataset.

Class Cardinality
Model

Cardinality
Kernel

Cardinality
Kernel
Learning

[3] AOG[4] HiRF[2] HiRFnt[2]

Cross 75.3 86.1 86.9 69.9 77.2 76.8 81.2
Wait 88.7 84.4 84.2 74.1 78.3 74.3 78.4
Queue 95.1 95.6 96.1 96.8 95.4 81.1 96.2
Walk 81.5 86.7 86.5 72.2 74.7 84.1 77.3
Talk 91.5 99.8 99.8 99.8 98.4 99.3 99.6
Avg 86.4 90.5 90.7 82.5 84.8 83.1 86.6

Similar to [61, 3, 4, 2], in our experiments 1/3 of the video clips were selected for test and the
rest for training. The results are shown in Table A.3 and Table A.4 based on classification
accuracy and precision of detection, respectively. We compare with the relevant frame-wise

110



methods in [3, 4, 2]. The comparison shows the efficacy of the proposed kernel methods,
where the results compare favourably to the state-of-the-art.

Table A.4: Comparing different methods based on average precision (in percent) on the
collective activity dataset.

Class Cardinality
Model

Cardinality
Kernel

Cardinality
Kernel
Learning

[3] S-AOG[4] HiRFnt[2]

Cross 42.7 73.7 78.7 61.5 69.6 75.0
Wait 83.3 67.3 65.3 59.2 68.3 74.1
Queue 94.1 99.7 99.8 65.5 76.2 78.7
Walk 20.8 47.0 46.8 58.1 65.3 68.1
Talk 99.0 99.7 99.7 67.5 82.1 84.4
Avg 68.0 77.5 78.0 62.4 72.3 76.0

A.3 Summary and Conclusion

We proposed a novel kernel learning framework for multi-instance classification. This frame-
work is constructed based on a multi-instance cardinality potential model, which can ex-
plore different levels of ambiguity in instance labels and model different cardinality-based
assumptions. The proposed adaptive kernel can help to perform classification within a
task-tuned discriminative embedded space of even infinite dimensionality. The results of
our experiments on standard MIL benchmark datasets and the retrieval of collective ac-
tivities in video showed the efficacy of the proposed kernel learning approach, achieving
state-of-the-art classification accuracy.
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