
IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT 1

Conceptual Imitation Learning Based on Perceptual
and Functional Characteristics of Action

Hossein Hajimirsadeghi, Majid Nili Ahmadabadi, and Babak Nadjar Araabi

Abstract—This paper presents a conceptual model for imitation
learning to abstract spatio-temporal demonstrations based on
their perceptual and functional characteristics. To this end, the
concepts are represented by prototypes irregularly scattered
in the perceptual space but sharing the same functionality.
functional similarity between demonstrations is understood by
reinforcements of the teacher or recognizing the effects of
actions. Abstraction, concept acquisition, and self-organization
of prototypes are performed through incremental and gradual
learning algorithms. In these algorithms, hidden Markov models
are used to prototype perceptually similar demonstrations. In
addition to above, a mechanism is introduced to integrate percep-
tions of different modalities for multimodal concept recognition.
Performance of the proposed model is evaluated in two different
tasks. The first one is imitation learning of some hand gestures
through interaction with the teachers. In this task, the perceptions
from different modalities, including vision, motor, and audition,
are used in a variety of experiments. The second task is to learn
a set of actions by recognizing their emotional effects. Results of
the experiments on a humanoid robot show the efficacy of our
model for conceptual imitation learning.

Index Terms—Imitation, Abstraction, Concept Learning, In-
cremental Learning, Hidden Markov Model.

I. INTRODUCTION

THE robots capable of imitation can enter the human
society by learning the human skills and social interac-

tions [1]. However, true imitation is discriminated from other
types of social learning (e.g., mimicking and sampling) by
abstraction, conceptualization and symbolization [2]–[4]. In
fact, perfect imitation is accompanied by comprehension and
generalization which are attained by abstraction. Hence, skills
can be represented in a generalized symbolic level which
is desired for high level cognitive tasks [5]. In addition,
abstraction helps for efficient memory management, handling
the huge real world search spaces [4], and quick knowledge
transfer from an agent to another agent or from a situation to
another situation [6].

Recently, symbolization and conceptualization has drawn
attention in robot learning by imitation [4], [6]–[10]. However,
the majority of previous works are dedicated to form concepts
based on similarity in perceptual space, and there is not enough
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work to find abstract concepts which share functional charac-
teristics. Perceptual characteristics of a concept are physical or
appearance-based features which show what the concept looks
like while functional characteristics are those which specify
what the concept is used for. We think that although perceptual
categorization is necessary to abstract demonstrations in imita-
tion, however, there exist skills or knowledge which cannot be
transferred merely from perceptual information, like functional
meaning or effect of the action. According to [11], [12], if a
robot is to interact socially with a human, it should convey
intentionality, i.e., it should express its beliefs, desires, and
intentions. Human displays these internal states by social cues
like gestures, postures, vocal and facial expressions. Indeed,
children gradually learn to recognize, reproduce, and respond
to these social cues in order to attribute beliefs, goals, and
desires to others, engage in social interactions, and respond
appropriately to situations [11]. However, intentionality is usu-
ally determined by functionality. It means that it is the function
of social cues that specifies the intention of individuals. Thus,
functional categorization of action is critically important for
development of social skills.

The concepts which consider both perceptual and functional
characteristics are called relational concepts [8], [13]. In this
paper, we aim to develop a model for learning relational
concepts through imitation.

II. RELATED WORKS

In the last two decades many researchers have tackled the
problem of imitation and abstraction. Most of these works
perform perceptual abstraction of demonstrations and do not
address functional associations between actions. Friedrich et
al. [14] proposed one of the earliest frameworks of robot
programming by demonstration with abstraction and gener-
alization capabilities. In this model, abstraction is performed
in symbolic level by encoding the task into a generalized
sequence of basic operations. However, each task or skill is
learned separately, and there is no functional conceptualization
or abstraction of the skills.

Wermter et al. [15], [16] proposed an architecture for
learning by demonstration and imitation based on multimodal
learning, integration, and association of motor actions, vision,
and language. In this model, the action sensor readings are
abstracted and encoded by selforganizing networks trained to
associate the actions to appropriate body parts and regions.
In the next level, the motor action codes are associated to
vision and language counterparts by a Helmholtz mechaine.
This system is based on the neurocognitive hypothesis that
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mirror neurons fire in response to an action being performed,
observed or verbally referred to [2], [16], [17]. Breazeal et
al. [18] proposed a bio-inspired model for imitation learning
and building socially intelligent robots. This model is inspired
by the early facial imitation in human infants. Using the model,
a robot was trained which could engage in both imitation and
social referencing. However, this model does not approach
abstraction of dynamics of action. Also, it does not capture
functional relations between the learned actions.

Kadone and Nakamura [6] introduced an incremental al-
gorithm to learn human motion primitives. Their model is
able to automatically segment, abstract, memorize, and recog-
nize demonstrated motions, using associative neural networks.
However, like previous works, symbolization and categoriza-
tion of the motion primitives is perceptual.

Hidden Markov Models (HMMs) have been extensively
used for development of imitation models in the last decade
[4], [7], [19]–[24]. Inamura et al. [4] proposed an HMM-
based imitation model, inspired by mirror neurons and mimesis
theory [25]. In this mathematical mimesis model, HMMs are
used to abstract body motions as symbols, and these symbols
are used for motion pattern recognition and generation. This
model is the core of most subsequent papers which uses
HMMs to symbolize motion patterns. In the mimesis model,
demonstrated motions of different behaviors are grouped man-
ually and next encoded into distinct HMMs in a batch training
approach. So, the number of HMMs representing different
behaviors is also determined a priori. Calinon et al. [19]
proposed a modified HMM-based imitation framework based
on dimensionality reduction. In this model, demonstrations are
captured by visual and motor sensors and then projected into
a latent space of reduced dimensionality. Next, the resulting
trajectories are stochastically encoded by HMMs. This model
performs well for both motion recognition and generalized
motion reconstruction, and also it is robust against noise and
needs less number of parameters for encoding. However, it
is not incremental, and also the concept of each trajectory
should be known a priori. Considering these shortcomings into
account, successive algorithms were proposed for incremental
and autonomous acquisition and learning of human motion
patterns from continuous demonstrations [20], [26], [27]. For
example, Kulic et al. [20] developed an algorithm for incre-
mental and autonomous learning, symbolization, recognition,
clustering and hierarchical organization of whole body motion
patterns, using Factorial HMMs. However, in all of these
works, abstraction and symbolization are based on similarity
in perceptual space, and the proposed approaches do not
address abstraction of relational concepts, which consider both
perceptual and functional characteristics.

On the other hand, there are very few papers on imitation
and abstraction based on similarity in functional space. One
of the main frameworks for conceptual imitation which con-
siders both perceptual and functional properties of action was
proposed by Mobahi et al. [8], [28], who introduced a bio-
inspired model to acquire abstract relational concepts from
imitation, using reinforcement learning. However, unlike our
algorithm which is suitable for sequence of observations (e.g.,
human motion), their proposed algorithm is only applicable for

concept acquisition from single observations. Moreover, in the
Mobahi et al. [8] model, only one motor action is considered
for all perceptual variants of a concept.

The present work largely extends (in both theory and
applications) our previously proposed model for imitation
learning of relational concepts [9], [10], [29]. In this model,
each concept is formed by a number of HMM prototypes
which represent different perceptual variants of the concept
but have the same functionality. First, we formulate concep-
tual imitation learning as a maximum likelihood optimiza-
tion problem in order to provide mathematical justifications
for the proposed algorithms. Next, two learning algorithms
are presented: 1) Reinforcement-Based Conceptual Imitation
Learning Algorithm (RBCIL) and 2) Effect-Based Conceptual
Imitation Learning Algorithm (EBCIL). RBCIL, which works
based on reinforcements of the teacher, is the modified ver-
sion of the algorithm in [9], [29] and leads to increase of
recognition accuracy with few training demonstrations. This
improvement is obtained by a new kind of prototype, namely
conceptual prototype, which fairly approximates the overall
perceptual features of a concept until emergence of the per-
ceptual prototypes which thoroughly represent the perceptual
variants of the concept. RBCIL algorithm is evaluated in a
variety of experiments with different types of data (perceived
by different sensory systems), including visual, motor, and
auditory data. It is also compared with some base-line batch
training algorithms. In addition, we show how our model can
be extended for multimodal concept representation and recog-
nition. The multimodal integration in imitation is basically
inspired by the well-known postulation that mirror neurons
are multimodal [2], [16], [17]. The second algorithm, EBCIL,
aims for imitation learning through recognition of functional
effects of action. This algorithm identifies functional similarity
between demonstrations through recognition of the effects
of actions, which is more natural, implicit, and user-friendly
(compared to explicit interaction with the teacher in RBCIL).

III. CONCEPTUAL IMITATION

A. Concepts
Concepts are categorized into three levels of abstraction,

namely, perceptual, relational, and associative [13]. Percep-
tual concepts are formed based on similarity of instances in
perceptual space. In relational concepts perceptual similarity
still contributes, but some external information, which specify
the functionalities, should be also provided. This information
integrates perceptually scattered categories into one concept.
For example, consider the two gestures “kneeling” and “re-
moving hat”, which are used for expressing respect in some
cultures. On one hand, we have different instances of kneeling
performed by different people, which are perceptually similar
to each other. On the other hand, these samples are perceptu-
ally different from the samples of removing hat. So, these two
gestures are categorized separately in perceptual space. But the
external information (e.g., the situation) which describes the
function of these gestures can link them into the right concept,
which is “respect”. Finally, in associative concepts, instances
of each concept has not any obvious physical similarity, but
shared functional characteristics put them into one concept.
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An important issue with a concept is how to represent
it. Two of the main theories for concept representation are
exemplar and prototype theories [30]. In exemplar theory, all
instances of a concept are memorized. In prototype theory,
a summary of instances are derived to represent various
instances of a concept. This theory is more abstract and
efficient to come up with limitations in memory.

B. Problem Description

In this work, we want to devise an algorithm for au-
tonomous extraction and learning of relational concepts from
imitation. In this way, demonstrated spatio-temporal actions
are abstracted based on similarity in both perceptual and
functional space. To this end, we favour to represent concepts
by prototypes. Actually, the ideal situation is when we have
the least number but the most comprehensive prototypes to
understand a concept. Consequently, in the face of new demon-
strations, the previously learned concepts can be recognized
using generated prototypes, and there is no need of learning the
action (motor commands to perform the action) from scratch.
Also, actions which are associated with the same concept can
be used alternatively in place of each other according to robot’s
comfort or affordance.

C. How to Teach Relational Concepts?

As described in Section III-A, relational concepts can-
not form merely from perceptual observations, and external
information should be also provided. This information can
unify perceptually scattered prototypes which represent the
same concept. We think that the external information can be
obtained through interaction with the teacher or recognizing
the effects of demonstrated actions in the environment. For
the former, it is desired to have a simple process to transfer
information from the naive teacher to the robot. One solution
to this problem is same/different judgement [31]. According to
[13], it is one of the simplest methods for learning relational
concepts, and it has been experimented to be effective in
teaching abstract concepts to some animals like pigeons and
chimpanzees [31]. In this work, a similar method is used.
First, the learning agent observes the teacher’s demonstration.
In response to the teacher, it guesses the concept of the
demonstration. Next, it executes an action which is linked to
that concept in its mind. Now, the teacher issues a reward or
punishment signal according to correctness or incorrectness of
the learning agent’s response. So, the agent understands if the
observed action and its executed action are associated with the
same or different concept. In this way, it gradually learns and
develops abstract concepts to increase its reward.

However, if the agent is able to recognize the effect of
demonstrated actions in the environment, there will be no need
of interaction with the teacher. In this case, the agent classifies
the demonstrations with similar effects in the same concept.

IV. PROPOSED CONCEPTUAL IMITATION LEARNING
MODEL

In this section, we present a mathematical formulation of the
problem and propose two algorithms for conceptual imitation

learning of incremental demonstrations. In these algorithms,
HMMs are used for abstraction and symbolization of spatio-
temporal perceptions. People unfamiliar with HMM should
refer to [32]. Also, to find the algorithms for motion generation
through HMM, one might see [4], [20], [21].

A. Model Formulation

In conceptual imitation, the agent recognizes the concept
of perceived demonstrations and then realizes the concepts by
performing appropriate actions. Now, we want to formulate the
model for concept recognition procedure. Let x = x1x2 · · ·xT
be a perceived demonstration with the concept label y ∈ Y .
This demonstration has also a perceptual label h ∈ Hy , which
represents one of the perceptual variants of the concept y.
In addition, for each perceptual variant of each concept, we
consider an HMM denoted by λhy . Our goal is to learn
all these HMMs (i.e., Λ = {λyh}y∈Y,h∈Hy ) in order to
conceptualize the perceived demonstrations. To this end, the
probability of a demonstration x with concept label y and
perceptual label h is defined as follows:

P (x|y, h,Λ) =
∑
a∈Y

∑
b∈Ha

P (x|λab)1(y = a, h = b)

= P (x|λyh) .

(1)

Using this formulation, we try to solve two problems:
1) inference, which is to find (recognize) the concept of
demonstrations given the learned model; and 2) learning,
which is to learn the model parameters (i.e., Λ).

1) Inference: Inference aims to predict the concept of a
demonstration. First, we define the probability of a demon-
stration x given a concept label y by:

P (x|y,Λ) = max
h∈Hy

P (x|y, h,Λ). (2)

This problem can be easily solved by enumerating all possible
perceptual labels h ∈ Hy . Next, the concept label y? is
recognized by:

y? = arg max
y∈Y

P (x|y,Λ) (3)

2) Learning: For now, we assume we are given a training
set of demonstrations and concept labels T = {(xn, yn)}Nn=1.
The goal is to learn the the model parameters Λ. To this end,
we propose the following maximum likelihood optimization
problem:

Λ? = arg max
Λ

N∏
n=1

P (xn|yn,Λ)

= arg max
Λ

N∏
n=1

max
h∈H

P (xn|yn, h,Λ).

(4)

This is a difficult optimization problem. Hence, inspired by
the popular approach for solving similar problems in latent
models, we use an iterative algorithm of alternating between
estimation of the latent variables and optimization of the model
parameters:
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• Estimation of latent variables: Hold Λ fix, and find the
latent variable hn of each training demonstration by the
following inference problem:

hn = arg max
h∈Hyn

P (x|yn, h,Λ). (5)

This can be solved identical to what proposed for (2).
• Optimization of the model parameters: Hold hn fixed and

solve the following optimization problem:

Λ? = arg max
Λ

N∏
n=1

P (xn|yn, hn,Λ) (6)

= arg max
Λ

N∏
n=1

P (xn|λynhn) (7)

= arg max
Λ

∏
a∈Y,b∈Ha

∏
n:yn=a,hn=b

P (xn|λab), (8)

which can be simplified as follows:

λ?ab = arg max
λab

∏
n:yn=a,hn=b

P (xn|λab),∀a ∈ Y, b ∈ Ha.

(9)

This optimization problem is exactly the same as
maximum likelihood optimization problem for training
HMMs, which is a very classic problem.

In summary, the first step categorize the demonstrations into
the perceptual variants (i.e. HMMs), and the second step trains
the HMMs with the corresponding demonstrations.

So far, we have assumed that we are given a full set of
labelled demonstrations for supervised learning. However, in
our conceptual imitation learning problem, the demonstration
are provided incrementally, and also the concept labels are not
explicitly known. In addition, we do not know the number of
perceptual variants of a concept a priori. Inspired by the asso-
ciative memory hypothesis of mirror neurons in computational
models of imitation [33] and what described in Section III,
we will modify the formulation and propose two algorithms
to come up with these problems in the next sections. It will
be shown how the agent can retrieve the true concepts of
demonstrated actions by the auxiliary reinforcement signal
of the teacher or recognizing the effects of actions during
learning process. Moreover, the agent will be able to abstract
incrementally perceived demonstrations into HMM exemplars
and prototypes in order to form the concepts gradually.
In a nutshell, the proposed algorithms use the two above-
mentioned steps for learning. However, due to the incremental
nature of the problem, the demonstrations are incrementally
assigned to the HMMs (equivalent to the first step), and after
each assignment, the corresponding HMM is updated with
the current demonstration (equivalent to the second step).
Moreover, since the number of perceptual variants are not
given, the algorithms start by training an HMM exemplar for
each demonstration. But, after receiving more demonstrations,
perceptually similar HMM exemplars of the same concept are
clustered into consolidated and compact HMM prototypes.

B. Reinforcement-Based Conceptual Imitation Learning Algo-
rithm (RBCIL)

The learning algorithm is a procedure where a cycle is
repeated whenever a new demonstration is perceived. To ease
explanation of the learning algorithm, assume we are at the
middle of execution where some concepts have been formed,
and some prototypes and exemplars have been stored in the
agent’s memory. In our algorithm, an exemplar is an HMM
made up of only one demonstration. However, prototypes are
HMMs formed by unifying and consolidating some exemplars
in the memory. Accordingly, we store the exemplars and
prototypes in two different sets, namely Working Memory
(WM) and Long-Term Memory (LTM), respectively. WM
stores the exemplars temporarily to manipulate and organize
the perceived information in the mind. LTM stores the proto-
types produced by abstraction and consolidation of categorized
information in the WM and forms the concepts. As a result,
each concept is defined as a set of prototypes, and all the
concepts together make the set of concepts Q:

WM =
⋃
e

λe;λe is an HMM exemplar (10)

LTM =
⋃
p

λp;λp is an HMM prototype (11)

Q =
⋃
y

qy; qy is a set of HMM prototypes (12)

However, to have better understanding of the algorithm, the
concepts have been embodied into symbolic units in Fig. 1,
and the exemplars and prototypes have been connected to
them. In fact, in the proposed algorithm, the exemplars and
prototypes membership in the concepts are described by two
functions cW and cL which associate exemplar and prototype
indexes with concept labels, respectively:

cW : N|WM | → N|Q| (13)

cL : N|LTM | → N|Q| (14)
NI := {1, 2, · · · , I} ; I ∈ N (15)

Exemplar Concept 1 

Concept 2 

Concept 3 

.

.

.

Perceptual

Prototype 

LTMConcepts WM 

Conceptual

Prototype 

Fig. 1: Associative memory of exemplars, prototypes, and
concepts.

As shown in Fig. 1, the prototypes in the LTM are divided
in two types: conceptual and perceptual. Each concept has
only one conceptual prototype, but it might have several
perceptual prototypes. A conceptual prototype is an overall



IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT 5

prototype (HMM) made out of all perceptual variants of a
concept, while perceptual prototypes are HMMs trained by
perceptually similar exemplars in the WM. So, perceptual
prototypes represent different perceptual variants of a concept
and can be employed to both recognize and generate these
variants. However, the conceptual prototypes can be solely
used for recognition purposes, and their generated sequences
might be dissimilar to any of the perceptual variants of a
concept. Furthermore, conceptual prototypes are more general
prototypes which show less recognition power in the face of
more specific perceptions.

Considering above definitions and assumptions, the pseudo-
code of the algorithm accompanied by its schematic illus-
tration are provided in Algorithm 1 and Fig. 2. Detailed
explanation of this algorithm is presented as follows.

Algorithm 1 Reinforcement-Based Conceptual Imitaion
Learning Algorithm
Input: Observed sequence, x = Sense().

Ytried = ∅
1: i = argmaxm,λm∈LTM,cLm /∈Ytried

P (x|λm).
2: if i is not Null then
3: y = cLi ,m = ay , Ytried = Ytried ∪ {y}
4: Perform(m)

5: R = Get Reinforcement()

6: if R > 0 and λi is a perceptual prototype then
7: if logP (x|λi) ≥ ll mini then
8: Update λi with x

9: else if logP (x|λi) < ll mini then
10: λe = New W(x), cWe = y

11: Update the conceptual prototype of qy with x

12: Try Clustering(qy)

13: end if
14: else if R > 0 and λi is a conceptual prototype then
15: i′ = argmaxm 6=i,λm∈LTM,cLm=y P (x|λm).
16: i = i′

17: Do the lines 7-13
18: else if R < 0 then
19: Go to line 1 and repeat the steps
20: end if
21: else if i is Null then
22: Find the motor action m? such that Perform(m?) = x

23: λe = New W(x), λp = New L(λe),

24: qy = New C(λp), cWe = y, ay = m?

25: end if
Output: The concepts: Q =

⋃
y qy .

Try Clustering(qy):
1: if number of exemplars in qy > Numth then
2: Cluster the elements in qy
3: for clusters which are satisfying the criteria for making new prototypes

do
4: λp = New L(cluster elements), cLp = y

5: end for
6: end if

A New Demonstration is Perceived (Lines #1 to #5 in the
pseudo-code): Now, assume that a novel demonstration is
perceived by the robot. First, Likelihood of this perception
sequence (x = x1x2 · · ·xT ) is computed against the HMM
prototypes in the LTM, using forward algorithm. Next, the
HMM prototype with the highest likelihood (we call this

prototype as the winning prototype) is found according to (16),
and the concept of this prototype is obtained according to (17):

i = arg max
m,λm∈LTM

P (x|λm), (16)

y = cLi , (17)

where, cLi is a simple function that maps a prototype index
(e.g., i) to a concept label (e.g., y). Then, the motor action
for that concept (i.e., m = ay) is performed. Afterwards,
reinforcement signal (reward or punishment) from the teacher
is issued. Now, it is crucial to specify three processes of
concept acquisition in the learning algorithm [34]: when to
make a new concept, when to modify a concept, and how to
modify a concept. The description of these procedures are as
follows.

Reinforcement Signal is Positive and the Winning Prototype
is a Perceptual Prototype (Lines #6 to #13 in the pseudo-
code): In this situation, it is firstly checked whether the new
perception sequence can be absorbed by this prototype or
not. It is defined that if the likelihood of the prototype is
high enough, the prototype can absorb the perception. To
evaluate whether the likelihood is high enough or not, the
following criteria is used. If the log likelihood of the new
perception given the winning HMM prototype is greater than
the minimum log likelihood of that HMM’s contents (i.e., the
perceptions previously encoded in that HMM), the likelihood
of this prototype is said to be high enough. We call the
aforementioned minimum log likelihood value ll min which
is adjusted whenever a new HMM prototype is generated or
modified. Next, the instructions in the following items are
performed according to ll min.
• 1. The Log Likelihood of the Winning Prototype is greater

than ll min (Lines #7 and #8 in the pseudo-code):
In this case, the only thing to do is to strengthen the win-
ning prototype by the new spatio-temporal perception. To
this end, a modified form of re-estimation formulas suited
for multiple observation sequences can be used [32]. The
algorithm works by over-weighting HMM prototypes in
order to consider the fact that they are built from multiple
sequences.

• 2. The Log Likelihood of the Winning Prototype is less
than ll min (Lines #9 to #13 in the pseudo-code):
This is the case when the log likelihood of the winning
HMM prototype is not high enough to absorb the new
perceived demonstration. In this situation, the perception
sequence is encoded as a new HMM exemplar, stored in
the WM, and linked to the rewarding concept (i.e., cW

is modified). Moreover, the conceptual prototype of that
concept is updated by the new perception sequence. The
reason to separate this item from the previous item is that
there might be no true perceptual prototype for the new
demonstration in the LTM, and so the winning prototype
does not truly represent the perceive sequence.

Reinforcement Signal is Positive and the Winning Prototype
is a Conceptual Prototype (Lines #14 to #17 in the pseudo-
code): In this case, first the most probable perceptual prototype
of the rewarding concept is found, and the absorbing criteria
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(i.e., logP (x|λ) > ll min) explained above is probed for this
prototype. If the criteria is satisfied, the procedure described
in item 1 is followed; Otherwise, the instructions in item 2 are
performed.

Reinforcement Signal is Negative, But there are Still Untried
Concepts in the Memory (Lines #18 to #20 in the pseudo-
code): In this case, the untried concepts are tried in an order
based on the likelihood of their HMM prototypes in the LTM.
Whenever a concept is tried, its label is stored in a set of tried
concept labels, namely Ytried. This process repeats until the
reinforcement signal of the teacher becomes positive. It means
that the perceived demonstration belongs to the concept which
receives reward from the teacher. Then, the agent modifies
this concept exactly the same as the previously explained
instructions, by updating the perceptual HMM prototype (if
log likelihood is greater than ll min) or making a new
HMM exemplar and updating the conceptual prototype (if log
likelihood is less than ll min).

Reinforcement Signal is Negative, But there is no Untried
Concepts in the Memory (Lines #21 to #24 in the pseudo-
code): This situation means that all the concepts have been
tried, but no reward has been issued by the teacher. In this
case, a new concept should be generated. For this purpose,
the perceived signal is encoded into an HMM, stored as a
conceptual prototype in the LTM, and make a new concept.
This prototype is also copied in the WM as an exemplar
and connects to the new born concept. The reason that we
make conceptual prototypes is to always have a representative
of the perceived concepts in the LTM. The number of these
prototypes is equal to the number of available concepts which
is usually less than the number of exemplars in the WM.
The stored exemplars in the WM are used in future to make
perceptual prototypes which lead to perceptual organization,
abstraction, and classification of information in the mind.

As previously noted, conceptual prototypes cannot be used
to regenerate the sequences appropriately. So, whenever a
new concept is created, the agent makes the motor action for
the perceived demonstration by the body inverse models and
stores this motor information in the memory until a perceptual
prototype emerges for that concept. Perceptual prototypes can
successfully generate appropriate generalized motion patterns
which are transformed to motor commands, using inverse
models.

Making New Prototypes by Clustering Exemplars and Per-
ceptual Prototypes of a Concept (Try Clustering function
in the pseudo-code): Following the procedure explained so far,
the WM is overpopulated with exemplars after a short time.
So, we must have an abstraction and consolidation mechanism
to merge HMM exemplars and make HMM prototypes, which
are stored in the LTM. For this purpose, whenever an exemplar
is stored in the WM of a concept and the number of exemplars
of that concept exceeds a threshold number (Numth

1), then

1It is a fixed parameter which is set before the algorithm starts. Low value
of this parameter speeds down the processing time of the algorithm (due to
increase of calling clustering process), but it advances production of prototypes
which results in less number of trial-and-error interactions required to train
the system (due to more accurate recognition of first demonstrations). In the
experiments of this paper, Numth is always set to 3.
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Fig. 2: Schematic diagram of RBCIL algorithm.

a clustering process gets started on both the HMM exemplars
and perceptual prototypes of that concept. In this work, we use
the algorithm proposed by Kulic et al. [20] to cluster HMMs
based on the pseudo-distance:

D (λ1, λ2) =
1

T

[
logP

(
x1|λ1

)
− logP

(
x1|λ2

)]
, (18)

where, λ1 and λ2 are two HMM models, x1 is a perception
sequence generated by λ1, and T is the length of x1. Finally
a symmetric distance is defined as:

Ds =
D (λ1, λ2) +D (λ2, λ1)

2
. (19)

Now that the distances between HMMs are specified, an
agglomerative algorithm which performs a complete link hier-
archical clustering is used to construct new prototypes. Final
clusters are selected based on two criteria, i.e., surpassing
the minimum number of elements and falling behind the
maximum distance measure. Maximum distance measure is
defined according to mean (µD) and standard deviation (σD)
of the distances between all the exemplars and perceptual
prototypes in the concept:

Dcutoff = µD −Kcutoff · σD. (20)

where, Kcutoff is an algorithm parameter which controls the
number and granularity of clusters. After this operation, if
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new clusters are produced, corresponding HMM prototypes
are trained with their associated elements in the clusters, using
Baum-Welch algorithm or modified re-estimation formulas
explained before. These HMMs are stored as perceptual proto-
types in the LTM. For example, if there are three exemplars in
a produced cluster, perception sequences from these exemplars
are trained into one HMM. In addition, the likelihood of
each of the three sequences is computed against the new
HMM prototype, and the minimum value is set as ll min
of this perceptual prototype. An illustration for the process
of clustering and producing perceptual prototypes is depicted
in Fig. 3. Note that high values of Kcutoff lead to more
number of prototypes with more specific and tighter encoding,
while low values of Kcutoff lead to less number of prototypes
with more general and looser encoding. In our experiments,
this parameter is set based on some prior knowledge of
the problems (e.g., perceptual similarity between different
perceptual variants of a concepts) and some trial and error.

Clustering Prototyping Replacing

All Perceptual 

Prototypes and 

E l f

Result of Clustering The elements of the 

cluster are trained into 

HMM

The elements of the 

cluster are replaced by 

th t l

One cluster New prototype

Exemplars of a 

Concept

an HMM as a 

perceptual prototype

the new perceptual

prototype

Fig. 3: An illustration for the process of clustering and
producing perceptual prototypes.

In the pseudo-code of the algorithm, there are also some
other functions, namely New W, New L, and New C to
make new exemplars, prototypes, and concepts, respectively:

New W : Ω (x)→WM (21)
New L : WM ∪ LTM → LTM (22)
New C := LTM → Q (23)

where, Ω (x) denotes the set of all finite sequences (or spatio-
temporal signals). Hence, in New W function, a new HMM
is trained with the perceived sequence and stored in the WM.

C. Effect-Based Conceptual Imitation Learning Algorithm

Another possible approach for conceptual imitation learning
is to use functional effects of actions. More specifically, the
functional similarities between demonstrations are identified
by their common effects. In this case, there is no need of
interaction with the teacher (and consequently the reinforce-
ment signal) to understand the function of demonstrations. The
only thing to do is to recognize the effects and then encode,
organize, and categorize the perceived demonstrations in the
memory by formation of appropriate prototypes and exemplars
(similar to the procedures explained for RBCIL algorithm in
the previous section).

The schematic illustration of EBCIL algorithm is shown
in Fig. 4. Note that in this algorithm the robot should have
the prior knowledge of classifying effects of action, and
subsequently this categorization of effects is transformed to

conceptualization of actions through the learning process.
Thus, at the end of the learning phase, the agent can recog-
nize and predict concept (effect) of novel demonstrations. In
addition, the agent will be capable of performing appropriate
actions to realize the learned concepts (effects).
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Fig. 4: Schematic diagram of EBCIL algorithm.

D. Recall Phase

After learning and in the recall phase, there is no external
information to retrieve the concepts. So, the robot should
use the acquired knowledge in the learning phase to classify
concept of each novel demonstration and produce appropriate
motor actions to realize that concept. For this purpose, we
follow the inference method in Section IV-A1, using only the
HMM prototypes in the LTM. After inferring the concept and
corresponding HMM prototype, a generalized motion pattern
is generated by that HMM (if it is a perceptual prototype) and
transformed into motor commands through the robot’s inverse
models. However, if it is a conceptual HMM prototype and
there is no perceptual prototype for that concept, the motor
program of the concept stored in the memory is used to retrieve
appropriate motor commands.
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V. EXPERIMENTAL SCENARIO 1: CONCEPTUAL HAND
GESTURE IMITATION THROUGH INTERACTION WITH THE

TEACHER

To test the proposed RBCIL algorithm in a human-robot
interaction task, we set up an experiment, which can be
called conceptual hand gesture imitation. In this experiment,
five people are asked to draw six signs by moving their
hands in the air. Signs are “Heart”, “Rectangle”, “Infinity”,
“Tick”, “Arc”, and “Eight”. Each sign might be produced with
perceptually different hand trajectories. For example, the Tick
sign might be sketched from left to right or from right to
left, but the functional meaning of both sketches is the same
for the subjects. In our experiment, we have one perceptual
representation for Rectangle and one perceptual representation
for Infinity but two representations for each remaining sign.
Samples of demonstrated hand gestures are provided in Fig. 5.

Fig. 5: Samples of demonstrated signs by the subjects. The
arrows show the direction of hand movement.

The demonstrations are incrementally provided to the robot.
The robot is the Aldebaran Robotics R© Nao humanoid robot.
The task is to learn conceptual imitation of the hand gestures.
It means that each sign is considered as a distinctive concept
which could have irregularly scattered representations in the
robot’s perceptual space. So, we are dealing with relational
concepts in this problem.

In the following sections, the details of each experiment
are explained and the results are reported and analysed com-
prehensively. In addition, we try to compare the proposed
algorithm with some other methods. However, there are a few
methods which are conceptually comparable to our algorithm.
In fact, our proposed algorithm aims to recognize and regen-
erate relational concepts, but other methods usually considers
perceptual concepts. As explained in Section II, RBCIL is
the modified version of the algorithm in [9], [29]. The main
distinction is learning and using conceptual prototypes (be-
sides the perceptual prototypes) in RBCIL algorithm. Thus, we
provide a detailed comparison between RBCIL algorithm and
the algorithm without conceptual prototypes in all experiments
of this section. Moreover, we compare the final recognition
results of RBCIL algorithm with some base-line methods for
motion abstraction and recognition. But, we should note that
our algorithm has an inherent superiority over these methods,
which is autonomous formation of perceptual variants of a
concept.

A. Learning through Visual and Motor Representations of
Demonstrations

This section explains the experiments conducted by visual
and motor representations of the demonstrated gestures. The
visual data represents the hand path trajectory in the robot’s
visual space. However, instead of the absolute values of hand
location in the image coordinates, we use the relative displace-
ments (i.e., {dx, dy}) to form the perception sequences enter-
ing the learning algorithm. So, the results would be invariant to
the translational and rotational transformations in the camera
coordinate. On the other hand, the motor data represents the
transformed trajectory from resulting visual sequence to the
joint angles of the Nao’s arm. This transformation is performed
by using the Nao’s built-in module of inverse kinematics,
which also considers the robot’s affordances. Throughout this
paper, the trajectory of roll and pitch angles of the Nao’s elbow
and shoulder joints recorded during the robot’s performance
is called as motor data. To understand the procedure of
visual hand motion extraction and tracking, interested reader
is referred to [9], [35].

210 demonstrations were incrementally provided for the
robot, including 43 demonstrations for Heart (22 for the 1st
perceptual representation and 21 for the second one), 23
demonstrations for Rectangle, 20 demonstrations for Infinity,
42 demonstrations for Tick (21 for each perceptual repre-
sentation), 42 demonstrations for Arc (21 for each percep-
tual representation), and 40 demonstrations for Eight (20 for
each perceptual representation). We employed our proposed
algorithm to learn the concept of demonstrated hand gestures.
In the concept learning algorithm, we set Kcutoff = 0.5,
Numth = 3 , and the number of states for HMMs was
set to 10. In the learning algorithm, minimum number of
elements to form a new perceptual prototype was set based
on the following rule. There should be at least one perceptual
prototype and one exemplar or three exemplars in a candidate
cluster to make a new perceptual prototype. We used k-fold
cross-validation with k = 5 to evaluate the performance of
our algorithm. So, the experiment was repeated five times with
different combinations of demonstrations for training and test.

1) Results of the Experiments with Visual Data: The rein-
forcement signals (average of five experiments) issued by the
teacher during the learning phase for the training demonstra-
tions are depicted in Fig. 6(a). More precisely, this plot shows
the first reinforcement of the teacher for each demonstration.
Thus, this plot illustrates the performance of the proposed
algorithm for incremental recognition. Note that due to the
discrete nature of the reinforcements (+1 for reward, and -1 for
punishment), the results in the figure has been smoothed with a
window length of 10 to clearly reflect the expected behavior. In
addition, this figure provides a comparison between the RBCIL
algorithm and the algorithm without conceptual prototypes. It
can be observed that using conceptual prototypes helps for
better performance at the first demonstrations. The reason
is that the conceptual prototypes of RBCIL algorithm make
the LTM keep at least one representative for each perceived
concept throughout the learning. However, the algorithm with
no conceptual prototypes should wait for emergence of per-
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ceptual prototypes. Hence, the contents of the LTM are limited
in this case, and consequently the LTM is not capable of
recognizing the previously seen concepts at first demonstra-
tions. But, by increasing number of demonstrations, there
will be no considerable difference between the two methods
since the equivalent perceptual prototypes of the concepts are
produced. Nevertheless, note that higher correct recognition
rate at the initial stages of learning is crucial for the real world
applications.
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Fig. 6: Results of the experiments with RBCIL algorithm on
visual data. (a) Average reinforcement over training demon-
strations with and without using conceptual prototypes. (b)
Load in long-term memory and working memory during
learning process. (c) Generated motion trajectories (solid lines)
by the resulting perceptual prototypes of the 2nd fold in
the experiments with the visual data, accompanied by some
of their training samples, denoted by dashed lines (the red
circles show the starting points). (d) Proto-symbol space of
the resulting perceptual prototypes of the 2nd fold. (e) Average
normalized confusion matrix. (f) An example of the signs (the
Heart sign) regenerated by the robot

Fig. 6(b) shows the average smoothed size of the LTM and
WM during learning. Number of perceptual prototypes pro-
duced at the end of the learning process of each experiment is
also provided in Table I. In most cases, the proposed algorithm
finds the same number of perceptual prototypes as the number
of perceptual variants of each sign shown in Fig. 5. In sum,
however, there might be one or two prototypes more than what
is expected. For example, in the second fold, three prototypes

have been produced for the Eight sign, but two perceptual
representations were considered for this sign in the task. The
reason is that the teachers are free to sketch the signs, and so
their demonstrations are not completely the same. As a result,
some samples of the same type might be more similar to one
another than the others, and consequently they are clustered
into one prototype when they are incrementally entering the
learning algorithm in a special order. Particularly, since the
visual features making perceptions out of demonstrations are
not scale invariant, motion samples of different scales could
make different perceptual prototypes. To illustrate this fact,
motion trajectories generated by the perceptual prototypes of
the second fold are demonstrated in Fig. 6(c). It can be seen
that although the generated motion sequences for the Eight1
and Eight3 are perceptually similar at the first glance, but they
are different in scale.

TABLE I: Number of Perceptual Prototypes Generated for
Each Concept in the Experiments with the Visual Data

Fold no. Heart Rectangle Infinity Tick Arc Eight Total
1 2 1 1 2 2 2 10
2 2 1 2 2 2 3 12
3 2 1 2 2 2 2 11
4 2 1 2 2 2 2 11
5 2 1 1 2 2 2 10

We also illustrate the proto-symbol space [7] of the percep-
tual HMM prototypes of the second fold in Fig. 6(d). This
space is constructed based on distances between all pairs of
the perceptual prototypes in the LTM, using multidimensional
scaling [36]. Distance between each pair of HMMs is obtained
according to (18) and (19). In Fig. 6(d), the first two principal
coordinates of multidimensional scaling have been used to
visualize dissimilarity of perceptual prototypes in the proto-
symbol space. In our work, this figure illustrates categorization
of relational concepts in perceptual space, where the proto-
types of a concept might be represented differently.

After the learning phase is completed, we use the prototypes
in the LTM to classify the concept of test demonstrations,
following the instructions in Section IV-D. The average correct
classification ratio for the five folds of the test data is 0.9235
with standard deviation of 0.0458. The average normalized
confusion matrix obtained in this experiment is also illustrated
in Fig. 6(e). It can be observed that recognition accuracy
of the Arc concept is the lowest. It is because we used
the same number of states (i.e., 10) to train all the HMMs.
However, the appropriate number of states varies according to
complexity of each sign. In fact, to have a better performance
for recognition of the Arc sign which has a simple waveform
(shape), less number of states should be used. But, it is not
easy to automatically estimate the optimal number of states a
priori in our incremental algorithm. One possible solution is
to use factorial hidden Markov models (FHMM) according to
the explanations in [20]. Indeed, FHMMs can be employed to
adaptively change complexity of the models. Hence, simple
waveforms can be encoded with less number of states, while
more complex waveforms or perceptually similar waveforms
which require more discriminative models can be trained with
more complex structures.
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Finally, an example of the signs (the Heart sign), regenerated
by the Nao through the learned perceptual prototype of the
proposed learning algorithm, is demonstrated in Fig. 6(f).

2) Results of the Experiments with Motor Data: In this
section, we use the 4-dimensional sequences of arm joint
angles to learn the concepts. This approach is motivated by a
postulation about mirror neurons (located in the F5 area of the
macaque’s brain) that suggests gesture recognition/imitation
is performed in motor terms [37]. The results of this ex-
periment are summarized as follows. Fig. 7(a) shows the
average reinforcement over demonstrations during the learning
phase. Again, it is noticeable that the proposed algorithm
outperforms the algorithm without conceptual prototypes for
the first demonstrations.
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Fig. 7: Experimental results with RBCIL algorithm on motor
data. (a) Average reinforcement over training demonstrations
with and without using conceptual prototypes. (b) Load in
long-term memory and working memory during learning. (c)
Proto-symbol space of the resulting perceptual prototypes of
the 1st fold. (d) Average normalized confusion matrix.

Fig. 7(b) shows the average smoothed size of the LTM and
WM throughout the learning phase. Moreover, the number of
perceptual prototypes produced after the learning are provided
in Table II. Also, Fig. 7(c) shows the proto-symbol space of
these prototypes.

TABLE II: Number of Perceptual Prototypes Generated for
Each Concept in the Experiments with Motor Data

Fold no. Heart Rectangle Infinity Tick Arc Eight Total
1 2 1 1 2 2 2 10
2 2 1 2 2 2 2 11
3 2 1 2 2 2 2 11
4 2 1 1 2 2 2 10
5 2 1 2 2 2 2 11

In recall phase, the algorithm achieves average correct
classification ratio of 0.9619 with standard deviation of 0.0213
on the test data. Note that the recognition rate by motor
data is about 4% better than the recognition rate by the

visual data reported in Section V-A1. This is because the
motor representations (which are 4D signals) contain more
information than the visual representations (which are 2D
signals). Finally, the average normalized confusion matrix for
this experiment is illustrated in Fig. 7(d).

3) Comparison Between the Proposed Algorithm and Some
Alternative Algorithms: In this section, we justify our pro-
posed algorithm experimentally by comparing with some
alternative algorithms. First, performance of the algorithm is
evaluated with different types of trained HMMs, and next
the algorithm is compared with standard HMM-based batch
algorithms.

Comparison of Recognition Results with Different Types of
HMMs: As described in Section IV-D, perceived demonstra-
tions are classified based on all the prototypes in the LTM.
But, there are also some other possibilities. For example, one
might use only perceptual prototypes or both prototypes and
exemplars. A comparison of recognition results on test data
with different types of HMMs is demonstrated in Fig. 8(a).
The number of HMMs used for each option is also provided
in Fig. 8(b) to have an estimation about the computational
costs. It can be seen that recognition with both prototypes (all
prototypes or only perceptual prototypes) and exemplars have
the highest recognition rate for the visual data (marginally
better than the algorithms without exemplars). But, the com-
putational cost of these algorithms are much more than the
computational cost of the algorithms using only prototypes
(which are about three times less costly). On the other hand,
for the motor data, recognition accuracy without exemplars is
even better than recognition accuracy with exemplars. In fact,
the exemplars in the proposed learning algorithm encode the
outlying samples which could not put into clusters with other
samples. Consequently, it can be declared that the exemplars
usually represent the special cases of a concept. So, it seems
even better to separate these samples in order to have more
unified and general models.

It is also noticeable in Fig. 8(a) and Fig. 8(b) that using only
perceptual prototypes leads to less computational cost than
using all the prototypes, while both the approaches have almost
the same recognition rate. However, as shown in the previous
sections, using both conceptual and perceptual prototypes have
better recognition results at the first demonstrations. Indeed,
conceptual prototypes can help to fairly represent the concepts
until the perceptual prototypes emerge. Note that in the real-
life applications, the agent should be capable of extracting the
maximum performance out of the learning knowledge while
it is living. Thus, to have a consistent approach throughout
the algorithm and satisfying the so-called learning by living
criteria, we suggest to use all the prototypes for concept
recognition in the recall phase.

Comparison between the Proposed Algorithm and Standard
HMM-Based Batch Algorithms: Now, we compare our pro-
posed algorithm with the algorithms using HMMs in a batch
training process. In the batch training, all the demonstrations
should be prepared, grouped, and labelled a priori before
learning gets started. We consider two algorithms: 1) batch
training with conceptual models and 2) batch training with
perceptual models. In the former, all samples of one concept



IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT 11

Visual Data Motor Data
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
o
rr

e
c
t 
C

la
s
s
if
ic

a
ti
o
n
 R

a
ti
o

Type of Training Data

0.9235

0.8902

0.6771

0.9378 0.9376

0.7243

0.9619 0.9669

0.8549

0.9476 0.9473

0.7921

Recall with All Prototypes

Recall with Perceptual Prototypes

Recall with Conceptual Prototypes

Recall with All Prototypes & Exemplars

Recall with Perceptual Prototypes & Exemplars

Recall with Conceptual Prototypes & Exemplars

(a)

Visual Data Motor Data
0

10

20

30

40

50

60

Type of Training Data

N
u
m

b
e
r 

o
f 
H

M
M

s

Recall with All Prototypes

Recall with Perceptual Prototypes

Recall with Conceptual Prototypes

Recall with All Prototypes & Exemplars

Recall with Perceptual Prototypes & Exemplars

Recall with Conceptual Prototypes & Exemplars

(b)

Visual Data Motor Data
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Type of Training Data

C
o
rr

e
c
t 
C

la
s
s
if
ic

a
ti
o
n
 R

a
ti
o

0.9235 0.9142

0.8247

0.9288
0.9619

0.9190

0.8109

0.9237

The Proposed Algorithm

Batch Traing with Perceptual Models

Batch Training with Conceptual Models

Batch Training with Conceptual & Perceptual Models

(c)

Fig. 8: Comparison of the algorithm performance with differ-
ent types of HMMs in terms of (a) recognition accuracy on
test data, and (b) number of HMMs.
(c) Comparison between the proposed algorithm and the batch
algorithms in terms of recognition accuracy on test data.

are trained by one HMM. Hence, the number of HMMs is
exactly the same as the number of concepts. In this algorithm,
the resulting HMMs can be used for concept recognition, but
they cannot be used independently for regeneration. Actually,
since different perceptual variants of a concept are pushed
into one model, their perceptual features are mixed up, and
the regenerated trajectory might be perceptually similar to
none of the variants. In the second algorithm, samples of
the same perceptual type (variant) are trained separately with
one HMM, and consequently, each concept is made up of the
HMMs representing its perceptual variants. For example, in
our experimental scenario, there are two HMMs for the Heart,
Tick, Arc, and Eight signs and one HMM for the Rectangle
and Infinity signs (summing up to 10 HMMs). Contrary to the
first algorithm, this algorithm can be used for both recognition
and regeneration purposes. Note that in the experiments of this
section, we used the same parameters and initializing process
for the HMMs as those described in Section V-A.

Fig. 8(c) shows the comparison between the recognition
results of our proposed learning algorithm and the batch
training algorithms on test demonstrations. Since our algo-

rithm uses both conceptual and perceptual prototypes for
concept recognition, we have also included the recognition
results obtained by batch-trained conceptual and perceptual
models together (although it is not a standard batch training
algorithm). It can be observed that although our proposed
algorithm is incremental and the perceived demonstrations
are not labelled a priori in this algorithm, it outperforms the
batch training algorithm with conceptual models, and also it
is slightly better than batch training algorithm with perceptual
models. In addition, our incremental algorithm is comparable
to the batch training algorithm with both conceptual and
perceptual models using the visual data, and it is even better
than this algorithm using motor data. There are two reasons for
this outcome. First, our incremental learning algorithm detects
the perceptual variants of a concept automatically according
to the robot’s perceptual space. For example, the algorithm
makes different prototypes for samples of different scales,
considering the robot’s perceptual space which is scale variant.
The second reason is that the proposed algorithm inhibits the
outlying samples from being trained into the HMM prototypes.
Thus, the resulting prototypes are more general and unified. It
can be also understood from Fig. 8(c) that batch training with
perceptual models have higher recognition accuracy than batch
training with conceptual models. Actually, it is an expectable
outcome since the perceptual models lead to a more strong
and comprehensive representation of the concepts (because the
perceptual features of demonstrations are better consolidated
in perceptual models). However, it should be considered that
the perceptual variants of the concepts should be manually
guessed in this algorithm (i.e., batch training algorithm with
perceptual models), which is not very straightforward.

B. Learning through Auditory Representations of Demonstra-
tions

Execution of some actions is accompanied by sounds, e.g.
knocking the door, flipping the papers, breaking a peanut, etc.
Actually, we can recognize these actions from their sounds.
In this experiment, we simulate attribution of some auditory
signals to the previously explained hand gestures. It means
that the teacher utters a word while he is demonstrating a
gesture. The uttered words are Persian numbers from 0 to
9, i.e., 0 and 1 for the two perceptual representations of the
Heart, 3 for the Rectangle, 6 for the Infinity, 2 and 5 for
the two representations of the Tick, 4 and 7 for the two
representations of the Arc, and finally, 8 and 9 for the two
representations of the Eight. The robot should hear the uttered
word and observe the demonstration performing alongside.
Next, the speech signal is provided to the learning algorithm
as the perception entry, and the motor representation of the
observed demonstration is saved as the motor action of the
associated concept. As a result, the robot learns to recognize
the concept of each demonstration through perception of its
accompanied sound, but employs the stored motor action of
that concept to regenerate the concept-equivalent gesture.

In this experiment, first the robot should extract features
out of perceived pure speech signals. For this purpose, we use
the Mel-frequency cepstral coefficients (MFCCs), which are
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popular and well-known spectral features for automatic speech
recognition [38]. Through this process, 13 features can be
extracted for each speech frame. However, in our experiments
we employ only the first four features. Consequently, the
resulting signal is a 4 dimensional sequence of MFCCs. For
the learning algorithm, we used the same settings as explained
in Section V-A except that Kcutoff = 0.9 and the number of
HMM states is equal to 5.

1) Results of the Experiments with Auditory Data: Fig. 9(a)
shows the average reinforcement over demonstrations during
the learning phase. Again, it is evident that using conceptual
prototypes leads to better performance at first demonstrations.
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Fig. 9: Experimental results with RBCIL algorithm on auditory
data. (a) Average reinforcement over training demonstrations
with and without using conceptual prototypes. (b) Load in
long-term memory and working memory during learning. (c)
Proto-symbol space of the resulting perceptual prototypes of
the 1st fold. (d) Average normalized confusion matrix.

Fig. 9(b) shows the average smoothed size of the LTM and
WM throughout the learning phase. Moreover, the number of
perceptual prototypes produced at the end of the learning phase
are provided in Table III. Accordingly, the proto-symbol space
of the perceptual prototypes in the first fold are illustrated in
Fig. 9(c).

TABLE III: Number of Perceptual Prototypes Generated for
Each Concept in the Experiments with Auditory Data

Fold no. Heart Rectangle Infinity Tick Arc Eight Total
1 2 2 1 2 2 2 11
2 3 1 1 3 2 2 12
3 3 1 2 2 2 2 12
4 2 1 1 2 2 3 11
5 1 1 1 2 3 2 10

After accomplishment of the learning phase, the obtained
prototypes are used to recognize the concept of test demon-
strations. the average recognition accuracy on test data is
0.9147 with standard deviation of 0.0391. Finally, the average
normalized confusion matrix for this experiment is illustrated
in Fig. 9(d).

C. Concept Recognition by Multimodal Integration of Hetero-
geneous Perception Sequences

As shown in the previous sections, a concept can be
represented by perceptual entries from different modalities.
For example, a concept can be understood by the perceived in-
formation from visual, auditory or kinesthetic sensory systems.
There is also a well-known postulation that mirror neurons
which map perception to action are multimodal, i.e., they
respond to actions perceived from multiple modalities [17].

In this section, we aim to propose a solution to integrate
heterogeneous perceptions from distinct modalities to improve
concept recognition. Multimodal integration helps to com-
pensate ambiguity or lack of information in one modality
with information from other modalities. So, the robustness is
increased, and the proposed imitation model becomes more
practical. To this end, a multimodal concept is defined as a set
of prototypes obtained from different modalities. In this case,
whenever a new demonstration is perceived only through one
modality, it is compared against prototypes of the same modal-
ity, and the most probable prototype retrieves the concept.
However, the problem arises when heterogeneous perceptions
of different modalities are sensed simultaneously. So, there
should be a mechanism to integrate all this information and
make final decision. Thanks to the stochastic representation
of concepts endowed by HMMs, multimodal integration is
facilitated in our model. In fact, one of the main challenges in
multimodal signal processing is that the measures in different
modalities are not comparable. However, probability is a
per-unit value without dimension which makes comparison
meaningful between heterogeneous modalities. So, with the
independence assumption between different modalities, the
probability of heterogeneous perception sequences can be mul-
tiplied by each other. According to what explained above, the
likelihood of heterogeneous perception sequences is computed
against available multimodal concepts, using the following
formula:

logP (x1,x2, · · · ,xL|qy) = max
λi1∈qy

logP (x1|λi1)

T1

+ max
λi2∈qy

logP (x2|λi2)

T2
+ · · ·+ max

λiL∈qy

logP (xL|λiL)

TL
,

(24)

where, L is the number of modalities, xl (l = 1, 2, · · · , L) is
the perception sequence of the lth modality with length Tl,
and λil is the ith prototype of the lth modality. The reason
for division by T is to normalize the weight of each modality
to become invariant to the sequence length. Finally, the most
probable concept is retrieved according to (25).

y? = arg max
y∈N|Q|

logP (x1,x2, · · · ,xL|qy). (25)

1) Results of Concept Recognition by Multimodal Integra-
tion of Heterogeneous Perception Sequences: In this section,
we use the resulting prototypes of the learning algorithm in
Sections V-A1, V-A2, and V-B1 to recognize the concept of
test demonstrations by the method presented in Section V-C.
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Note that the experiment is evaluated with a 5-fold cross-
validation. Fig. 10(a) reports the recognition accuracy on test
data for each type of data, including visual, motor, auditory,
visual-motor, visual-auditory, and visual-motor-auditory data.
It can be observed that integration of different modalities
improves the recognition performance. It is also noticeable
that the motor-auditory and visual-motor-auditory integrations
lead to recognition rate of 100%. In addition, it can be seen
that integration of audition with the other modalities has
better results than visual-motor integration in this experiment
(although single usage of auditory data has the worst result).
The reason is that visual and motor data have been extracted
form the same source of information, but auditory data is
from a completely different source. Hence, in this experiment
auditory integration could better compensate the ambiguity in
the two other modalities.
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Fig. 10: Multimodal concept recognition. (a) Comparison of
the recognition rates for different modalities. (b) Comparison
of the recognition confidence in terms of log likelihood for
different modalities.

In addition, to compare the confidence of recognizing the
true concept with different modalities, we show the recognition
results of test data (in terms of log likelihood) in Fig. 10(b).
The vertical axis of this plot is defined by:

1

Ntest

Ntest∑
i=1

1

L

(
logP

(
xi1,x

i
2, · · · ,xiL|qtrue

)
− max
y:qy 6=qtrue

logP
(
xi1,x

i
2, · · · ,xiL|qy

))
,

(26)

where, Ntest indicates the number of test demonstrations. This
figure shows that integration of the modalities even increases
the true recognition confidence.

VI. EXPERIMENTAL SCENARIO 2: CONCEPTUAL HAND
GESTURE IMITATION THROUGH RECOGNITION OF

EMOTIONAL EFFECTS

In this section, we evaluate the performance of EBCIL
algorithm in an experimental scenario. In this experiment, the
concept of demonstrations are specified by their emotional
effects. The experiment is as follows. There are three par-
ticipants: a robot, a teacher, and a human affected by the
robot’s action (we call him the third agent). The robot is the
Nao humanoid robot introduced in Section V. Demonstrations
are provided for the robot by kinesthetic teaching. It means
that the teacher grabs the robot’s arm and performs an action,

e.g. strikes at the third agent. Next, the third agent shows
an emotional response (reaction) to the the teacher’s action,
e.g. gets angry. The robot perceives its arm joint variables
during performance of the action. Indeed, the perceived signal
is a 4 dimensional sequence of roll and pitch angles of the
elbow and shoulder joints in the robot’s right arm. The robot
also recognizes the emotional response of the third agent after
action execution. So, it can understand functional similarities
between different demonstrations based on the sameness of
their emotional effects. For example, whether the teacher
strikes the third agent from right or left, emotional response
of the third agent will be the angry facial expression.

All the concepts accompanied by their actions and emo-
tional responses are summarized in Table IV In all the con-
cepts, the third agent’s response is identified by his facial
expression except for the Love concept. For this concept,
the response is to stimulate the tactile sensor on the Nao’s
head by caressing. For facial expression detection, the simple
algorithm2 of Eigenfaces [39] is employed after cropping
the face image using the algorithm of Pai et al. [40]. Total
number of demonstrations in this experiment is 120, i.e.,
15 demonstrations for each action. For the concept learning
algorithm, we use the same settings as explained in Section
V-A, i.e., Kcutoff = 0.5, Numth = 3, and 10 states for each
HMM. Like the previous experiments, the results are evaluated
with a 5-fold cross-validation.

A. Results

Results of the experiments are summarized as follows. To
show the progress of recognition accuracy during learning
(like the previous experiments), a scoring system is used. In
this system, whenever a demonstration is perceived, first it is
classified by the previously learned concepts before entering to
the learning algorithm. If the perception sequence is classified
correctly, a positive score (+1) is issued, else a negative score
(-1) is recorded. The smoothed average scores (over the five
folds) recorded during the learning process on the training
data is illustrated in Fig. 11(a). It can be observed in the
figure that the robot successfully recognizes the concept of
almost all new perception sequences after being trained by a
few demonstrations. In addition, the average smoothed size of
the LTM and WM throughout the learning phase is shown in
Fig. 11(b).

The Number of perceptual prototypes produced at the end
of learning by each fold is reported in Table V. In most
cases, EBCIL algorithm finds the same number of perceptual
prototypes as the number of actions which represent perceptual
variants of a concept. We also illustrate the proto-symbol space
of perceptual prototypes of the first fold in Fig. 11(c).

After termination of the learning phase, we use the re-
sulting prototypes of the LTM to recognize concept of the
test demonstrations (according to the explanations in Section
IV-D). The outcome is that the algorithm can correctly classify
all the test demonstrations. Finally, the action execution results
are presented in Fig. 11(d), which demonstrates samples of

2Since in our experiments facial expression classifier is trained and test on
the same person, this algorithm can be accurate enough.
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TABLE IV: All the Concepts Accompanied by their Actions and Emotional Responses
# Concept Robot’s Action 1 Robot’s Action 2 Robot’s Action 3 Third Agent’s Response
1 Anger Striking from Right Striking from Left - Angry Face
2 Unhappiness Hitting on Head Hitting on Chest - Unhappy Face
3 Happiness Throwing Fist Up & Down - - Happy Face

4 Love Sketching Heart Sign Air Kiss Caressing the Face Caressing the Robot’s
Tactile Sensor
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Fig. 11: Results for the experimental scenario 2. (a) Average
recorded score over demonstrations during learning process
using EBCIL algorithm. (b) Average load in long-term mem-
ory and working memory during learning. (c) Proto-symbol
space of the resulting perceptual prototypes of the 1st fold. (d)
Samples of regenerated actions by the Nao humanoid robot.

TABLE V: Number of Perceptual Prototypes Generated for
Each Concept in the Experiments of the Experimental Scenario
2

Fold no. Anger Unhappiness Happiness Love Total
1 2 2 1 3 8
2 2 2 2 3 9
3 2 2 1 3 8
4 2 2 1 3 8
5 2 2 2 3 9

reproduced actions by the Nao humanoid robot accompanied
by their equivalent emotional responses.

VII. CONCLUSION

In this paper, we introduced a model for conceptual im-
itation learning. Conceptual imitation tries to model true
imitation in human and mammals, which is said to be fulfilled
by abstraction, generalization, recognition, and regeneration
of action. Due to abstraction and generalization, the learning
agent can even recognize novel demonstrations of previously
learned concepts and regenerate generalized motion patterns
for these concepts. But, imitation learning based on relational
concepts leads to abstraction in both perceptual and functional
space and consequently leads to less number of concepts (since

perceptual variants of a function are all put into one concept).
As a result, the agent will have a smaller representation of the
world in its mind, and so it can interact with the world more
simply and search in its memory more easily. In addition, the
functional abstraction causes ease of knowledge transfer and
flexibility of choice between action alternatives.

The main contribution of this paper was to devise incremen-
tal and gradual learning algorithms for autonomous learning
and acquisition of relational concepts from spatio-temporal
demonstrations, using perceptual and functional characteristics
of action. Functional similarities between demonstrations were
identified by interaction with the teacher (RBCIL algorithm) or
recognizing the effects of actions (EBCIL algorithm). HMMs
were used to abstract perception sequences into stochastic
prototypes and exemplars. Consequently, relational concepts
formed as a set of irregularly scattered HMMs unified based
on their functionalities. In addition to above, a modified
conceptual representation was proposed for learning multi-
modal concepts. In fact, the original model is modified to a
multimodal model which can recognize multimodal concepts
by integration of heterogeneous perceptions. We also showed
how recognizing functional effects of action can remove the
need of interaction, and how the knowledge of classifying the
effects leads to the knowledge of conceptualizing the actions.

We evaluated the proposed RBCIL algorithm in an exper-
imental scenario, namely conceptual hand gesture imitation
through interaction with the teachers. The experiment was
conducted on the Nao humanoid robot. Results showed that
the proposed model is successful for parallel acquisition
of concepts, emergence and self-organization of prototypes,
recognition, and regeneration of demonstrated gestures. It was
also shown that our incremental learning algorithm can even
outperform the base-line batch algorithms. This successful
outcome was due to autonomous formation of prototypes pro-
portionate to the agent’s perceptual space and also inhibition of
prototyping the outliers by separating them into exemplars. In
addition, an experiment was performed for multimodal concept
recognition. Simulation results showed that our model can be
successfully fit to the multimodal concepts. As a result of the
proposed multimodal integration, both recognition accuracy
and recognition confidence were increased in this experiment.

Another experimental scenario was also carried out to
evaluate performance of the proposed EBCIL algorithm for
conceptual imitation learning based on functional effects of
action. In this experiment, the robot conceptually imitates
a number of moving hand gestures by recognition of their
emotional effects. The experiments, conducted on the Nao,
showed the successful results of our model for learning and
acquisition of all the concepts and regeneration of their equiv-
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alent actions. As a result, the robot transforms to an effective
agent which is capable of predicting effects (concepts) of novel
demonstrations and also realizing these effects by execution of
appropriate actions.
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