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Abstract— This paper presents a novel discrete population 

based stochastic optimization algorithm inspired from weed 

colonization. Its performance in a discrete benchmark, time-

cost trade-off (TCT) problem, is evaluated and compared with 

five other evolutionary algorithms. Also we use our proposed 

discrete invasive weed optimization (DIWO) algorithm for 

cooperative multiple task assignment of unmanned aerial 

vehicles (UAVs) and compare the solutions with those of genetic 

algorithms (GAs) which have shown satisfactory results in the 

previous works. UAV task assignment problem is of great 

interest among researchers and many deterministic and 

stochastic methods have been devised to come up with the 

problem. Monte Carlo simulations show successful results that 

verify better performance of DIWO compared to GAs in both 

optimality of the solutions and computational time. 

I. INTRODUCTION 

NVASIVE weed optimization (IWO) is a continuous, 

stochastic numerical algorithm inspired from weed 

colonization which is proposed by Mehrabian and Lucas in 

[1]. IWO has shown successful results in many practical 

applications like optimization and tuning of a robust 

controller [1], developing a recommender system [2], design 

of encoding sequences for DNA computing [3], distributed 

identification and adaptive control of a surge tank [4], 

analysis of electricity markets dynamics [5], optimal 

positioning of piezoelectric actuators [6], and adaptive 

beamforming [7]. 

Many computational problems such as traveling salesman 

problem (TSP), vehicle routing problem (VRP), job 

scheduling, graph coloring, quadratic assignment, and 

routing for telecommunication networks are inherently 

discrete. Due to IWO’s characteristics, e.g. remarkable 

outcomes in previous works and ease of implementation, we 

are encouraged to introduce a novel discrete version of IWO 

named as discrete invasive weed optimization (DIWO) and 

apply it to discrete combinatorial problems like time-cost 

trade-off (TCT) problem and cooperative multiple task 

assignment of unmanned aerial vehicles (UAVs). 

UAVs are very prominent and practical nowadays because 

of their outperforming ability in both civilian and military 
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applications like search, surveillance, rescue, information 

gathering, mapping buildings and facilities, fire detection 

and extinguishment, crop yield prediction [8], and other 

dangerous missions that would be risky for a human pilot. 

The lack of an on-board pilot, significant weight savings, 

longer endurance, and lower costs [9] are some of the other 

reasons that justify the emergence and prevalence of UAVs. 

Especially, increasing interest is devoted to investigation of 

collaborative behaviors of UAVs. For instance, protection of 

a ground convey of vehicles with help of a team of UAVs is 

discussed in [10]. 

Flight path planning, trajectory tracking, collision and 

obstacle avoidance, synchronization between cooperative 

tasks [11], motion control [8], wireless communication, 

visual sensing, and task allocation which is described and 

discussed more in this paper, are some of hot topics in UAV 

research area. Note that most of these topics are also 

common in the autonomous collective robotics [11]. The 

European project, civil UAV applications and economic 

effectively of potential configuration solutions (CAPECON), 

has been started in 2001 to identify and define civil UAV 

applications [12]. In the near future, a significant planning 

capability is required to execute UAVs missions without 

human interference [13]. Many of the state-of-the-art 

technologies and innovations such as sensor networks, and 

machine vision systems are developed in these vehicles for 

various applications.  

UAV task assignment has been an active research area for 

the past few years [14]. This problem is a non polynomial-

hard (NP-hard) combinatorial one and is similar and related 

to some common assignment and scheduling problems such 

as TSP, VRP, and dynamic network flow optimization 

(DNFO) [15].  

There have been various evolutionary algorithms utilized 

to solve UAV task assignment problem. For example 

particle swarm optimization (PSO) algorithm is used in [15]. 

Other non-evolutionary techniques such as network flow 

optimization model, dynamic programming, branch and 

bound, decision tree [9], linear programming, binary linear 

programming (BLP), and mixed integer linear programming 

(MILP) are also exploited [14], [15]. In [14], a team theory 

approach is discussed and applied to this problem without 

any global communication among UAVs. Smith and Nguyen 

presented a fuzzy approach based on genetic programming 

for task scheduling of autonomous and cooperative vehicles 

in [16]. Task Assignment problem with balancing search is 

proposed and solved in [12] with predictive strategy. Gil et 

al. [11] solved task assignment problem coped with 
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imperfect communication and arbitrarily finite delays. In 

[17], Shima et al. proposed a specific task assignment 

problem and resolved it with genetic algorithms (GAs). In 

this work, we take their assumptions [17] and compare our 

results with theirs. In addition, on closer inspection, we 

propose a modified GA (M-GA) which preserves a limited 

number of infeasible solutions in each generation, because it 

is possible that infeasible solutions may have more useful 

information than feasible ones [1]. 

The remainder of this paper is organized as follows. In 

Section II, DIWO is introduced while in Section III, we go 

through our first case study, the TCT problem, and compare 

the results with five other evolutionary methods. UAV task 

assignment problem is elaborated in Section IV and solved 

with DIWO in Section V where simulation results and 

analyses are given. Finally, conclusions are drawn, and 

future works are presented in Section VI. 

II. DISCRETE INVASIVE WEED OPTIMIZATION 

Due to IWO’s distinctive properties, its global and local 

abilities for exploration and exploitation, and also its 

successful results in a considerable number of applications 

after a short time of its development, we are motivated to 

introduce DIWO. DIWO is the modified version of IWO, 

suitable for discrete optimization problems like TCT and 

UAV task assignment. The framework of DIWO is the same 

as IWO’s, but some considerations are taken for exploration 

in discrete search spaces. At first, we explain IWO briefly 

[1], and then transform it to the discrete version. 

 

1) Initialization: A population of initial seeds (N0) is 

randomly being dispread over the search space. 

2) Reproduction: The individuals, after growing, are allowed 

to reproduce new seeds linearly depending on their own, 

the lowest, and the highest fitness of the colony (all of 

plants). The procedure is illustrates in Fig. 1 [1]. Note 

that maximum (Smax) and minimum (Smin) number of 

seeds are predefined parameters of the algorithm and 

adjusted according to structure of problem.  

3) Spatial Dispersal: The generated seeds are being 

randomly scattered with a normal distribution over the 

search space. The mean of distribution is equal to the 

location of parent plant, but standard deviation (SD), σ, 

will be reduced from a specified initial value, σinitial, to  

the final value, σfinal, according to (1).  

 

      
               

         
 (               )        . (1) 

 

Where σiter is the SD at the present step, and σinitial, σfinal, 

itermax (maximum number of iterations), and n 

(modulation index) are other parameters. This nonlinear 

modification has shown satisfactory performance in 

many simulations [1]. This assumption means that seeds 

will be randomly distributed such that they lie close to 

the parent plant [3]. 

4) Competitive Exclusion: When the maximum number of 

population in a colony is reached (Pmax), each weed is 

allowed to produce seeds and spread them according to 

the mechanism mentioned in step 2 and step 3, 

respectively. After that, new seeds with their parents are 

ranked together with respect to their fitness. Next, weeds 

with lower fitness are eliminated to reach the maximum 

allowable population size in a colony. 

This mechanism by using the “survival of the fittest” 

idea [18] (a common concept in evolutionary algorithms) 

gives a chance to plants with lower fitness to reproduce, 

and if their offsprings have good fitness, they can survive 

in their offspring’s existence [1].  

5) Termination Condition: The whole process continues until 

the maximum number of iterations has been reached, and 

we hope that the plant with the best fitness is the closest 

one to the optimal solution. 

 
In DIWO algorithm, the processes for initialization, 

reproduction, competition exclusion, and also termination 

are completely the same as IWO. But spatial dispersal is 

modified to random selection of solutions from a 

neighboring hypercube in the discrete space of solutions 

around the plant with a normal distribution. The main 

challenges in this method are definition of the neighboring 

hypercube (i.e., a metric for distance between solutions), and 

then selection of an appropriate spatial dispersal approach 

providing the important attribute of original IWO which is 

“offspring seeds should lay near their parent plant.” These 

issues are somehow heuristic and task dependent, varying 

from one problem to another. The pseudo code for DIWO is 

given in Fig. 2. 

 
Fig. 1.  Seeds reproduction procedure [1] 



  

 
 

III. TIME-COST TRADE-OFF PROBLEM 

In this section, we want to solve the time-cost trade-off 

(TCT) problem introduced in [19] and evaluate the 

performance of our proposed DIWO in comparison with five 

other evolutionary algorithms (EAs): particle swarm 

optimization (PSO), ant colony optimization (ACO), genetic 

algorithms (GAs), memetic algorithms (MAs), and shuffled 

frog leaping (SFL) using the simulation results provided in 

[20]. As it is mentioned in [20], it was tried to find the best 

possible parameters for the above-mentioned algorithms to 

have a reasonable comparison and providing guidelines for 

determining the best parameters for each algorithm. The 

detailed description of the TCT problem is characterized in 

Table I. The problem consists of 18 activities with a 

maximum of 5 options (methods of construction) for each 

one and indirect cost of $500/day. Options are decision 

variables which should be determined so that the following 

cost function (J) is minimized: 
 

      ∑   

 

   

  (2) 

where    number of activities;       direct cost of activity 

  with option  ;    total project duration; and    daily 

indirect cost. In this problem, the optimization process is 

said to be successful when the project is terminated by 110 

days. Also the optimal cost for this problem is $161,270. 

For the process of seeds generation, a distance metric 

between two options   and    is defined equal 

to                                    , i.e., for activity 

  the distance between option   (parent plant’s option) and 

the other options is calculated with this metric and then 

normalized. Next, one of the options is randomly chosen 

with a normal distribution according to its distance from   

and the current value of SD (     ). Simulation results for 

1. Genearte random population of    individuals from the set of 
feasible solutions 

2.  =: 1 
3. do 

a. Compute maximum and minimum fitness in the colony 

b. For each individul      

i. Compute the number of seeds for  , corresponding to 

its fitness 

ii. Randomly select the seeds from the feasible solutions 

around the parent plant ( ) in a neighborhood with 
normal distribution 

iii. Add the generated seeds to the solution set,   

c. If | |         

i. Sort the population   in descending order of their fitness 
ii. Truncate population of weeds with smaller fitness until 

       

d.  =:  +1 
4. Repeat 3 until the maximum number of iterations 

 
Fig. 2.  Pseudo code for DIWO algorithm 

 

TABLE I 

TEST PROBLEM FOR DISCRETE OPTIMIZATION 

  Option 1 Option 2 Option 3 Option 4 Option 5 

Activity 

no. 
Depends on 

Duration 

(days) 
Cost ($) 

Duration 

(days) 
Cost ($) 

Duration 

(days) 
Cost ($) 

Duration 

(days) 
Cost ($) 

Duration 

(days) 
Cost ($) 

1 - 14 2400 15 2150 16 1900 21 1500 24 1200 

2 - 15 3000 18 2400 20 1800 23 1500 25 1000 

3 - 15 4500 22 4000 33 3200 - - - - 

4 - 12 45000 16 35000 20 30000 - - - - 

5 1 22 20000 24 17500 28 15000 30 10000 - - 

6 1 14 40000 18 32000 24 18000 - - - - 

7 5 9 30000 15 24000 18 22000 - - - - 

8 6 14 220 15 215 16 200 21 208 24 120 

9 6 15 300 18 240 20 180 23 150 25 100 

10 2, 6 15 450 22 400 33 320 - - - - 

11 7, 8 12 450 16 350 20 300 - - - - 

12 5, 9, 10 22 2000 24 1750 28 1500 30 1000 - - 

13 3 14 4000 18 3200 24 1800 - - - - 

14 4, 10 9 3000 15 2400 18 2200 - - - - 

15 12 12 4500 16 3500 - - - - - - 

16 13, 14 20 3000 22 2000 24 1750 28 1500 30 1000 

17 11, 14, 15 14 4000 18 3200 24 1800 - - - - 

18 16, 17 9 3000 15 2400 18 2200 - - - - 

 



  

this problem by performing 20 trial runs are summarized in 

Table II. It can be observed that DIWO outperforms other 

algorithms in both percentage of success and average value 

of the cost function. The parameters of DIWO for this 

experiment are also listed in Table III. With this parameters 

setting, the average number of function evaluations is about 

20000, addressing the computational complexity of DIWO 

in this problem. Note that in simulation of DIWO, the 

process stopped when maximum allowable iteration was 

reached, but for other EAs, a different termination criterion 

was used in [20].  

TABLE II 
RESULTS OF THE TCT PROBLEM FOR COMPARISON WITH 5 EAS 

Alg. 

Minimum 

project duration 
(days) 

Average 
project 

duration 

(days) 

Minimum 

cost ($) 

Average 

cost ($) 

%Success 

rate 

DIWO 110 110 161,270 161,582 100 

GAs 113 120 162,270 164,772 0 

MAs 110 114 161,270 162,495 20 

PSO 110 112 161,270 161,940 60 

ACO 110 122 161,270 166,675 20 

SFL 112 123 162,020 166,045 0 

 

TABLE III 

DIWO PARAMETER VALUES FOR TCT PROBLEM OPTIMIZATION 

Symbol Quantity Value 

   Number of initial population 10 

        Maximum number of iterations 400 

    Problem dimension 18 

     Maximum number of plant 40 

     Maximum number of seeds 3 

     Minimum number of seeds 1 

  Nonlinear modulation index 3 

      Initial value of standard deviation 1 

       Final value of standard deviation 0.08 

To illustrate the transient performance of DIWO 

algorithm, trace of mean, minimum, maximum, and standard 

deviation of the objective values for 20 runs are depicted in 

Fig. 3 and Fig. 4, respectively.  

 

Fig. 3.  Mean, max, min of cost functions in the TCT problem. 

 
Fig.  4.  Standard deviation of cost functions in the TCT problem. 

IV. COOPERATIVE MULTIPLE TASK  

ASSIGNMENT OF UAVS 

In this section, the cooperative multiple task assignment 

problem (CMTAP) for a set of homogeneous UAVs is 

defined according to [17]. Let   {        } denotes the set 

of stationary ground targets,   {        } denotes the set 

of UAVs performing the tasks    {        }, on the 

specified targets. For a common example, tasks can be 

categorized in the form of   {                      } for 

a generic surveillance and rescue mission. Task assignment 

is allocating UAVs (V) to perform various tasks (M) at 

several targets (T) so as to minimize an objective function 

(J) with respect to various constraints. In this problem the 

task precedence and coordination should be considered to 

make feasible solutions, i.e., in the above-mentioned 

mission, the procedure of rescue on a target can be 

performed exactly only after the classification process, and 

also before the verification maneuver on that target. More 

other constraints might be imposed on the problem, e.g., fuel 

consumption constraints, timing constraints and flyable 

trajectories. Note that in real time applications, predictions 

can be so inaccurate due to the nature of the problem and 

result in such poor decisions that it is simply better not to 

predict ahead [11].  

The UAV CMTAP which is a well-known NP-hard 

combinatorial optimization problem in computer science can 

be represented by a tree which is helpful for problem 

visualization and encoding [17]. The nodes of tree show the 

assignment of a UAV     to a task     on a target     

at a specific time, so the tree can represent both the decision 

and state spaces at the same time. The children of each node 

incorporate all of the possible assignments that can be made 

according to the remaining tasks. Hence, a branch of the 

tree, from a root node to a leaf node makes a feasible 

solution for the proposed problem (the length of this branch 

is equal to        ). 

A number of performance criterions have been introduced 

for CMTAP; among them the cumulative distance (R) and 

the longest distance travelled by the UAVs are more 

popular. The former aims to minimize the use of overall 

group resources while the latter is searching for the 

minimum time for the team to terminate the whole mission. 

In this study, we use the cumulative form for the 

simulations, which is formulated in (3). Note that in 
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simulations, Euclidean distance is used as an estimate of the 

flyable trajectory length. 

  

  ∑  

  

   

 (3) 

For encoding the solutions, the proposed genetic scheme 

in [17] is employed. In this method, unlike the conventional 

string encoding approach, an individual is represented by a 

matrix. The individual matrix has two rows and    columns. 

The columns are the cells which are equivalent to the nodes 

in the tree representation. The first row is dedicated for 

encoding the assignment of vehicles while the second row 

presents the sequence of tasks to be performed on the 

targets. Actually, the second row is encoded by the numbers 

in the set of targets T, and the ordering of the appearance of 

each target (from left to right) determines which task is 

being performed. Hence, to have a feasible solution, each 

target should be appeared in the second row for exactly    

times. An example matrix for a problem with two UAVs, 

three targets, and three tasks is illustrated in Fig. 5. 

 

Vehicle 2 1 1 2 2 1 2 2 1 

Target 1 3 1 2 3 2 1 2 3 

Fig. 5.  Example of individual matrix for encoding the solutions  

The number of feasible solutions for this problem can be 

used as a measure of the problem’s computational 

complexity. In [17], it is proved that the number of feasible 

solutions (  ) can be calculated by (4).  

 

   
       

      
  

     
(4) 

 

It is apparent that    and subsequently the computational 

complexity would increase very rapidly as the number of 

targets, tasks, or UAVs increases. So, devising an algorithm 

which can make a near optimal feasible solution with speed 

and accuracy balance [18] and monotonically improvement 

through the time is of great interest for this problem.  

Evolutionary algorithms which have shown successful 

results to tackle with complexity of discrete combinatorial 

optimization problems might be the best choice to solve this 

problem. They may also offer the possibility of multiple 

parallel processors implementation on embedded systems 

[17]. 

V. SIMULATIONS AND RESULTS 

As discussed in the previous section, the UAV 

cooperative multiple task assignment problem is a very 

complex combinatorial problem. In this section, we 

elaborate DIWO for UAV CMTAP in a centralized manner 

of control and compare it with GA which showed a good 

performance in [17]. Moreover, for inspection of trade off 

between feasibility and infeasibility of solutions, we also 

propose a modified GA (M-GA) to compare with two other 

algorithms. M-GA method preserves a limited number of 

infeasible solutions in each generation. It is possible that 

infeasible solutions may have more useful information than 

feasible ones and besides, the whole process might reach to 

its optimum point more easily if the procedure can cross an 

infeasible area. 

All steps in our proposed DIWO are the same as the 

original IWO except the spatial dispersal step. The 

procedure of dispersal is as follows. At every iteration 

variable   {        } which specifies the start cell of the 

dispersal is computed according to (5), and then cells 

               are selected and changed randomly to 

make a new seed. 

  

              (
    

           
           )  (5) 

  

Equation (5) has shown satisfactory performance in 

simulations, while provides a good balance between 

exploration and exploitation. 

This new seed is established upon its parent and due to the 

trend of   which is evident in Fig. 6, their resemblance 

increase, as the simulation goes on. This specific trend of   

has a similarity to SD in original IWO (1). Indeed, this 

method of spatial dispersal, in this specific problem, is 

consistent with the law that “offspring seeds should lay near 

the parent plant.” With this formulation, the number of 

parameters in DIWO is five as: N0 = number of initial 

population; itermax = maximum number of iterations; Pmax = 

maximum number of plants; Smax and Smin = maximum and 

minimum number of seeds.  

  
Fig. 6.  L vs. iteration value 

  In the GA [17] and our DIWO algorithm, we enforce 

each solution to be a feasible one. But in the M-GA we let 

some infeasible solutions stay in the population. (We assign 

this parameter in this problem equal to 30) This approach 

consumes less time than GA and may result in better 

performance which is apparent in Table IV and Table V. 

Simulation results for scenario 1 and 2 by performing 20 

Monte Carlo trial runs are summarized in Table IV and 

Table V, respectively. Scenario 1 is a small size problem 

consisting of 3 targets and 4 vehicles and scenario 2 is a 

large one with 10 targets and 8 vehicles. We use the 

Euclidean path as an estimate of the flyable trajectory for 

simulating the scenarios. 

0  Iter_max
0 

Nc

Iteration
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TABLE IV 

RESULTS OF SCENARIO 1 MEAN OF 20 MONTE CARLO RUNS 

Algorithm Cost (Km) Computational Time (s) 

GA 1289.05 17.24 

DIWO 1203.51 8.42 

M-GA 1244.20 17.23 

 
TABLE V 

RESULTS OF SCENARIO 2 MEAN OF 20 MONTE CARLO RUNS 

Algorithm Cost (Km) Computational Time (s) 

GA 5847.59 74.73 

DIWO 5703.75 54.91 

M-GA 5872.88 74.62 

 

 

It can be observed that DIWO outperforms two other 

algorithms in both the minimization of the objective function 

and computational time. The workstation used for 

simulations is the same for all of algorithms and the coding 

structures are tried to be efficient, so the computational time 

comparison is fair and reasonable. 

The parameters of DIWO and GA (from [17]) are listed in 

Table VI. The values in parentheses are just related to 

scenario 1 and the others are the same for both scenarios. 

Note that in the simulations, the optimization process 

stopped when maximum allowable iteration was reached 

(the same for all of algorithms, i.e., Ng=itermax). 

  
TABLE VI 

PARAMETER VALUES 

Alg. Ns= N0 Ng = itermax Ne Pm Pc Pmax Smax Smin 

GA 200 300(200) 6 0.01 0.94 -- -- -- 

DIWO 200 300(200) -- -- -- 30 10(6) 1 

M-GA 200 300(200) 6 0.01 0.94 -- -- -- 

 

 In Table VI, Ns = number of offsprings in each iteration 

for GAs; Ng = number of generations which acts as a 

termination criteria; Ne = number of elite offsprings; Pm = 

Probability of mutation; and Pc = Probability of crossover. It 

is noteworthy that the initial populations in Monte Carlo 

runs are the same for all the algorithms to eliminate the 

effect of initialization. For a better comparison, the mean of 

20 Monte Carlo simulation results for scenario 1 and 2 are 

depicted in Fig. 7 and Fig. 8, respectively. 

Fig. 7.  Mean of 20 Monte Carlo runs, Results of scenario 1. 

 
Fig. 8.  Mean of 20 Monte Carlo runs, Results of scenario 2. 

VI. CONCLUSION 

 Discrete Invasive Weed Optimization (DIWO) a novel 

Bio-inspired stochastic optimization algorithm was proposed 

in this work. DIWO framework is similar to IWO except for 

the dispersal spatial step which is somehow task dependent 

and heuristic. Performance of DIWO was evaluated and 

compared with five other evolutionary algorithms through a 

Time-Cost Trade-Off problem.  

Also its application to UAV task assignment is 

investigated and compared with two different GAs. The cost 

function is assumed to be the total travelling path of all 

vehicles to fulfill the whole mission. Monte Carlo 

simulations verified DIWO capability for optimization by 

yielding better results (lower cost) in less computational 

effort. In practical cases, predictions can be very imprecise 

so if any uncertainty such as failure of one task happens, the 

optimization process should be performed again with new 

initialization. So, less computational time and ease of 

practical implementation on embedded systems make the 

proposed algorithm beneficial in real time decision-making 

situations. For further investigations, the effect of 

incorporating surveillance to the task assignment problem, 

communication imperfection and consideration of flyable 

path instead of Euclidean path can be surveyed.  
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